CIESC Journal ›› 2023, Vol. 74 ›› Issue (9): 3831-3840.DOI: 10.11949/0438-1157.20230341
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yitong LI(), Hang GUO(
), Hao CHEN, Fang YE
Received:
2023-04-06
Revised:
2023-08-24
Online:
2023-11-20
Published:
2023-09-25
Contact:
Hang GUO
通讯作者:
郭航
作者简介:
李艺彤(1996—),女,博士研究生,yitongli@emails.bjut.edu.cn
基金资助:
CLC Number:
Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions[J]. CIESC Journal, 2023, 74(9): 3831-3840.
李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840.
参数 | 取值 |
---|---|
铂载量/(mg/cm2) | 0.4 |
操作温度/K | 343.15 |
操作压力/MPa | 0.1 |
阳极氢气流量/(ml/min) | 600 |
质子交换膜厚度/m | 5.3×10-5 |
催化层厚度/m | 1.5×10-5 |
气体扩散层厚度/m | 3.75×10-4 |
流道宽度/m | 7.5×10-4 |
流道深度/m | 1.0×10-3 |
流道长度/m | 4.0×10-2 |
Table 1 Experimental conditions in Ref. [34]
参数 | 取值 |
---|---|
铂载量/(mg/cm2) | 0.4 |
操作温度/K | 343.15 |
操作压力/MPa | 0.1 |
阳极氢气流量/(ml/min) | 600 |
质子交换膜厚度/m | 5.3×10-5 |
催化层厚度/m | 1.5×10-5 |
气体扩散层厚度/m | 3.75×10-4 |
流道宽度/m | 7.5×10-4 |
流道深度/m | 1.0×10-3 |
流道长度/m | 4.0×10-2 |
流动方式 | 电流密度/(A/cm2) | |||
---|---|---|---|---|
均匀分布 | 二梯度分布 | 三梯度分布 | ||
0.8 V | 顺流 | 0.0829 | 0.0860 | 0.0850 |
逆流 | 0.0834 | 0.0864 | 0.0854 | |
0.5 V | 顺流 | 0.9672 | 0.9735 | 0.9712 |
逆流 | 0.9715 | 0.9773 | 0.9749 | |
0.2 V | 顺流 | 1.3891 | 1.4474 | 1.4288 |
逆流 | 1.3897 | 1.4480 | 1.4292 |
Table 2 Current density for downstream and countercurrent flow
流动方式 | 电流密度/(A/cm2) | |||
---|---|---|---|---|
均匀分布 | 二梯度分布 | 三梯度分布 | ||
0.8 V | 顺流 | 0.0829 | 0.0860 | 0.0850 |
逆流 | 0.0834 | 0.0864 | 0.0854 | |
0.5 V | 顺流 | 0.9672 | 0.9735 | 0.9712 |
逆流 | 0.9715 | 0.9773 | 0.9749 | |
0.2 V | 顺流 | 1.3891 | 1.4474 | 1.4288 |
逆流 | 1.3897 | 1.4480 | 1.4292 |
铂载量分布方式 | 氧气浓度/(mol/m3) | 液态水饱和度 | ||
---|---|---|---|---|
顺流 | 逆流 | 顺流 | 逆流 | |
均匀分布 | 3.24 | 3.23 | 0.0709 | 0.0712 |
二梯度分布 | 3.15 | 3.13 | 0.0746 | 0.0749 |
三梯度分布 | 3.16 | 3.15 | 0.0742 | 0.0744 |
Table 3 The average oxygen concentration and liquid water saturation in the cathode catalyst layer for downstream and countercurrent flow
铂载量分布方式 | 氧气浓度/(mol/m3) | 液态水饱和度 | ||
---|---|---|---|---|
顺流 | 逆流 | 顺流 | 逆流 | |
均匀分布 | 3.24 | 3.23 | 0.0709 | 0.0712 |
二梯度分布 | 3.15 | 3.13 | 0.0746 | 0.0749 |
三梯度分布 | 3.16 | 3.15 | 0.0742 | 0.0744 |
铂载量分布方式 | 平均温度/K | 温度标准差/K | ||
---|---|---|---|---|
顺流 | 逆流 | 顺流 | 逆流 | |
均匀分布 | 348.38 | 348.64 | 0.9391 | 0.8945 |
二梯度分布 | 348.69 | 348.73 | 1.0605 | 1.1917 |
三梯度分布 | 348.66 | 348.71 | 0.9980 | 1.1351 |
Table 4 Temperature in the membrane electrode assembly at 0.5 V for downstream and countercurrent flow
铂载量分布方式 | 平均温度/K | 温度标准差/K | ||
---|---|---|---|---|
顺流 | 逆流 | 顺流 | 逆流 | |
均匀分布 | 348.38 | 348.64 | 0.9391 | 0.8945 |
二梯度分布 | 348.69 | 348.73 | 1.0605 | 1.1917 |
三梯度分布 | 348.66 | 348.71 | 0.9980 | 1.1351 |
Fig.6 Effect of stoichiometric ratio on oxygen concentration on the cathode catalyst layer center line along the flow channel direction for two-gradient distribution of platinum loading
Fig.7 Effect of stoichiometric ratio on temperature on the cathode catalyst layer center line along the flow channel direction for two-gradient distribution of platinum loading
Fig.9 Effect of stoichiometric ratio on oxygen concentration on the cathode catalyst layer center line along the flow channel direction for three-gradient distribution of platinum loading
Fig.10 Effect of stoichiometric ratio on temperature on the cathode catalyst layer center line along the flow channel direction for three-gradient distribution of platinum loading
1 | 张诚, 檀志恒, 晁怀颇. “双碳”背景下数据中心氢能应用的可行性研究[J]. 太阳能学报, 2022, 43(6): 327-334. |
Zhang C, Tan Z H, Chao H P. Feasibility study of hydrogen energy application on data center under “carbon peaking and neutralization” background[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 327-334. | |
2 | Huang T M, Huang J, Feng M C, et al. Optimization of the thickness of catalytic layer for HT-PEMFCs based on genetic algorithm[J]. Energy Reports, 2022, 8: 12905-12915. |
3 | Zhu K Q, Ding Q, Xu J H, et al. Optimization of gas diffusion layer thickness for proton exchange membrane fuel cells under steady-state and load-varying conditions[J]. Energy Conversion and Management, 2022, 267: 115915. |
4 | Li X A, Tang F M, Li B, et al. (Digital presentation) effects of catalyst dimension parameters on local oxygen transport in cathode catalyst layer of proton exchange membrane fuel cell[J]. ECS Transactions, 2022, 108(7): 165-179. |
5 | Guo H, Zhao Q, Ye F. An experimental study on gas and liquid two-phase flow in orientated-type flow channels of proton exchange membrane fuel cells by using a side-view method[J]. Renewable Energy, 2022, 188: 603-618. |
6 | Chen X, Yang C, Sun Y, et al. Water management and structure optimization study of nickel metal foam as flow distributors in proton exchange membrane fuel cell[J]. Applied Energy, 2022, 309: 118448. |
7 | Havaej P, Kermani M J, Abdollahzadeh M, et al. A numerical modeling study on the influence of catalyst loading distribution on the performance of polymer electrolyte membrane fuel cell[J]. International Journal of Hydrogen Energy, 2018, 43(21): 10031-10047. |
8 | Li Y T, Guo H, Ye F. Heat and mass transfer in a proton exchange membrane fuel cell with gradient distribution of platinum loading along flow channel direction[J]. International Journal of Energy Research, 2022, 46(7): 8872-8890. |
9 | Xing L, Wang Y, Das P K, et al. Homogenization of current density of PEM fuel cells by in-plane graded distributions of platinum loading and GDL porosity[J]. Chemical Engineering Science, 2018, 192: 699-713. |
10 | Xing L, Xu Y X, Penga Ž, et al. A segmented fuel cell unit with functionally graded distributions of platinum loading and operating temperature[J]. Chemical Engineering Journal, 2021, 406: 126889. |
11 | Schwarz D H, Djilali N. Three-dimensional modelling of catalyst layers in PEM fuel cells: effects of non-uniform catalyst loading[J]. International Journal of Energy Research, 2009, 33(7): 631-644. |
12 | Yang L, Fu K H, Jin X S, et al. Catalyst layer design with inhomogeneous distribution of platinum and ionomer optimal for proton exchange membrane fuel cell cold-start[J]. Chemical Engineering Science, 2022, 263: 118132. |
13 | Lei H H, Xing L, Jiang H, et al. Designing graded fuel cell electrodes for proton exchange membrane (PEM) fuel cells with recurrent neural network (RNN) approaches[J]. Chemical Engineering Science, 2023, 267: 118350. |
14 | Yu R J, Guo H, Ye F, et al. Multi-parameter optimization of stepwise distribution of parameters of gas diffusion layer and catalyst layer for PEMFC peak power density[J]. Applied Energy, 2022, 324: 119764. |
15 | Lin G Y, He W S, van Nguyen T. Modeling liquid water effects in the gas diffusion and catalyst layers of the cathode of a PEM fuel cell[J]. Journal of the Electrochemical Society, 2004, 151(12): A1999. |
16 | Dannenberg K, Ekdunge P, Lindbergh G. Mathematical model of the PEMFC[J]. Journal of Applied Electrochemistry, 2000, 30(12): 1377-1387. |
17 | Darling R. Modeling air electrodes with low platinum loading[J]. Journal of the Electrochemical Society, 2019, 166(7): F3058-F3064. |
18 | Xing L, Das P K, Song X G, et al. Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: the interaction of Nafion® ionomer content and cathode relative humidity[J]. Applied Energy, 2015, 138: 242-257. |
19 | Hu G L, Li G N, Zheng Y Q, et al. Optimization and parametric analysis of PEMFC based on an agglomerate model for catalyst layer[J]. Journal of the Energy Institute, 2014, 87(2): 163-174. |
20 | Moein-Jahromi M, Kermani M J. Performance prediction of PEM fuel cell cathode catalyst layer using agglomerate model[J]. International Journal of Hydrogen Energy, 2012, 37(23): 17954-17966. |
21 | Jung C Y, Shim H S, Koo S M, et al. Investigations of the temperature distribution in proton exchange membrane fuel cells[J]. Applied Energy, 2012, 93: 733-741. |
22 | Srinivasarao M, Bhattacharyya D, Rengaswamy R, et al. Parametric study of the cathode and the role of liquid saturation on the performance of a polymer electrolyte membrane fuel cell—a numerical approach[J]. Journal of Power Sources, 2010, 195(19): 6782-6794. |
23 | Rao R M, Bhattacharyya D, Rengaswamy R, et al. A two-dimensional steady state model including the effect of liquid water for a PEM fuel cell cathode[J]. Journal of Power Sources, 2007, 173(1): 375-393. |
24 | Xing L, Liu X T, Alaje T, et al. A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell[J]. Energy, 2014, 73: 618-634. |
25 | Hosseini M, Afrouzi H H, Arasteh H, et al. Energy analysis of a proton exchange membrane fuel cell (PEMFC) with an open-ended anode using agglomerate model: a CFD study[J]. Energy, 2019, 188: 116090. |
26 | Chen H, Guo H, Ye F, et al. A numerical study of baffle height and location effects on mass transfer of proton exchange membrane fuel cells with orientated-type flow channels[J]. International Journal of Hydrogen Energy, 2021, 46(10): 7528-7545. |
27 | Li S A, Yuan J L, Xie G N, et al. Effects of agglomerate model parameters on transport characterization and performance of PEM fuel cells[J]. International Journal of Hydrogen Energy, 2018, 43(17): 8451-8463. |
28 | Li X, Tang F M, Wang Q Q, et al. Simulation on cathode catalyst layer in proton exchange membrane fuel cell: sensitivity of design parameters to cell performance and oxygen distribution[J]. International Journal of Hydrogen Energy, 2022, 47(58): 24452-24463. |
29 | Kulkarni N, Cho J I S, Jervis R, et al. The effect of non-uniform compression on the performance of polymer electrolyte fuel cells[J]. Journal of Power Sources, 2022, 521: 230973. |
30 | Yu R J, Guo H, Ye F. Study on transmission coefficients anisotropy of gas diffusion layer in a proton exchange membrane fuel cell[J]. Electrochimica Acta, 2022, 414: 140163. |
31 | Choi J, Kim E, Cha Y, et al. Probing the influence of nonuniform Pt particle size distribution using a full three-dimensional, multiscale, multiphase polymer electrolyte membrane fuel cell model[J]. Electrochimica Acta, 2022, 405: 139811. |
32 | Wang N, Qu Z G, Jiang Z Y, et al. A unified catalyst layer design classification criterion on proton exchange membrane fuel cell performance based on a modified agglomerate model[J]. Chemical Engineering Journal, 2022, 447: 137489. |
33 | Chen H, Guo H, Ye F, et al. Forchheimer’s inertial effect on liquid water removal in proton exchange membrane fuel cells with baffled flow channels[J]. International Journal of Hydrogen Energy, 2021, 46(3): 2990-3007. |
34 | 孙红, 吴玉厚. 反应气体流量和背压对PEM燃料电池性能的影响[J]. 沈阳建筑大学学报(自然科学版), 2006, 22(6): 1034-1037. |
Sun H, Wu Y H. Effects of reactant flow rate and backpressure on the performance of PEM fuel cells[J]. Journal of Shenyang Jianzhu University(Natural Science), 2006, 22(6): 1034-1037. |
[1] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[2] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[3] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[6] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[7] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[8] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[9] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[10] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[11] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[12] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[13] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[14] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[15] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 390
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 240
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||