CIESC Journal ›› 2019, Vol. 70 ›› Issue (5): 1832-1841.DOI: 10.11949/j.issn.0438-1157.20181286
• Separation engineering • Previous Articles Next Articles
Received:
2018-10-31
Revised:
2019-02-18
Online:
2019-05-05
Published:
2019-05-05
Contact:
Min WANG
通讯作者:
王敏
作者简介:
<named-content content-type="corresp-name">时历杰</named-content>(1984—),男,硕士,助理研究员,<email>lijieshi@isl.ac.cn</email>|王敏(1966—),女,学士,研究员,<email>marliy001@163.com</email>
基金资助:
CLC Number:
Lijie SHI, Min WANG. Phase behavior of K-Mg mixed salt during transformation-flotation from Yiliping magnesium sulfate-type salt lake[J]. CIESC Journal, 2019, 70(5): 1832-1841.
时历杰, 王敏. 一里坪硫酸镁亚型盐湖钾镁混盐转化-浮选中物相行为[J]. 化工学报, 2019, 70(5): 1832-1841.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181286
Name | No. | Chemical composition/% | Phase composition/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Na+ | K+ | Mg2+ | Cl- | SO4 2- | NaCl | Kai | Car | Bis | ||
K-Mg mixed salt | S0 | 10.86 | 10.18 | 6.65 | 29.07 | 22.09 | 27.61 | 56.21 | 8.45 | 2.69 |
Table 1 Chemical composition of K-Mg mixed salt from Yiliping salt lake
Name | No. | Chemical composition/% | Phase composition/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Na+ | K+ | Mg2+ | Cl- | SO4 2- | NaCl | Kai | Car | Bis | ||
K-Mg mixed salt | S0 | 10.86 | 10.18 | 6.65 | 29.07 | 22.09 | 27.61 | 56.21 | 8.45 | 2.69 |
Name | No. | Quantity/g | Chemical composition/% | Phase composition/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Na+ | K+ | Mg2+ | Cl- | SO4 2- | NaCl | Kai | Car | Bis | Pic | |||
K-Mg mixed salt | S0 | 100.00 | 10.86 | 10.18 | 6.65 | 29.07 | 22.09 | 27.61 | 56.21 | 8.45 | 2.69 | |
water | W | 60.32 | ||||||||||
water-salt mass ratio | m | m=0.6032 | ||||||||||
mother liquid after transformation | L1 | 104.16 | 2.85 | 3.05 | 4.30 | 16.22 | 4.71 | |||||
solid after transformation | S1 | 56.16 | 14.07 | 12.47 | 3.88 | 21.70 | 30.64 | 35.78 | 64.22 | |||
solid yield/% | 72.76 | 68.79 | 32.77 | 41.92 | 77.90 |
Table 2 Theoretical calculation results of K-Mg mixed salt transformation from Yiliping salt lake at 15℃
Name | No. | Quantity/g | Chemical composition/% | Phase composition/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Na+ | K+ | Mg2+ | Cl- | SO4 2- | NaCl | Kai | Car | Bis | Pic | |||
K-Mg mixed salt | S0 | 100.00 | 10.86 | 10.18 | 6.65 | 29.07 | 22.09 | 27.61 | 56.21 | 8.45 | 2.69 | |
water | W | 60.32 | ||||||||||
water-salt mass ratio | m | m=0.6032 | ||||||||||
mother liquid after transformation | L1 | 104.16 | 2.85 | 3.05 | 4.30 | 16.22 | 4.71 | |||||
solid after transformation | S1 | 56.16 | 14.07 | 12.47 | 3.88 | 21.70 | 30.64 | 35.78 | 64.22 | |||
solid yield/% | 72.76 | 68.79 | 32.77 | 41.92 | 77.90 |
Name | No. | Quantity/g | Chemical composition/% | ||||
---|---|---|---|---|---|---|---|
Na+ | K+ | Mg2+ | Cl- | SO4 2- | |||
K-Mg mixed salt | S0 | 200 | 10.86 | 10.18 | 6.65 | 29.07 | 22.09 |
m=0.30 | |||||||
water | W | 60 | |||||
mother liquid after transformation | L2 | 100 | 1.90 | 2.65 | 5.28 | 16.63 | 5.57 |
solid after transformation | S2 | 160 | 12.96 | 10.48 | 4.88 | 25.60 | 24.54 |
solid yield/% | 91.59 | 86.35 | 59.66 | 71.12 | 87.57 | ||
m=0.40 | |||||||
water | W | 80 | |||||
mother liquid after transformation | L3 | 145 | 1.94 | 2.85 | 5.00 | 16.15 | 5.44 |
solid after transformation | S3 | 135 | 13.02 | 10.71 | 4.11 | 22.94 | 25.52 |
solid yield/% | 86.19 | 77.77 | 43.35 | 56.94 | 81.37 | ||
m=0.50 | |||||||
water | W | 100 | |||||
mother liquid after transformation | L4 | 170 | 2.40 | 2.86 | 4.72 | 16.05 | 5.44 |
solid after transformation | S4 | 130 | 13.38 | 10.78 | 3.94 | 22.90 | 25.75 |
solid yield/% | 81.00 | 74.24 | 38.96 | 52.18 | 78.35 | ||
m=0.60 | |||||||
water | W | 120 | |||||
mother liquid after transformation | L5 | 200 | 2.37 | 2.84 | 4.57 | 15.52 | 5.48 |
solid after transformation | S5 | 120 | 14.41 | 11.42 | 3.84 | 22.59 | 28.70 |
solid yield/% | 78.47 | 70.70 | 33.52 | 46.62 | 75.86 |
Table 3 Experimental results of K-Mg mixed salt transformation
Name | No. | Quantity/g | Chemical composition/% | ||||
---|---|---|---|---|---|---|---|
Na+ | K+ | Mg2+ | Cl- | SO4 2- | |||
K-Mg mixed salt | S0 | 200 | 10.86 | 10.18 | 6.65 | 29.07 | 22.09 |
m=0.30 | |||||||
water | W | 60 | |||||
mother liquid after transformation | L2 | 100 | 1.90 | 2.65 | 5.28 | 16.63 | 5.57 |
solid after transformation | S2 | 160 | 12.96 | 10.48 | 4.88 | 25.60 | 24.54 |
solid yield/% | 91.59 | 86.35 | 59.66 | 71.12 | 87.57 | ||
m=0.40 | |||||||
water | W | 80 | |||||
mother liquid after transformation | L3 | 145 | 1.94 | 2.85 | 5.00 | 16.15 | 5.44 |
solid after transformation | S3 | 135 | 13.02 | 10.71 | 4.11 | 22.94 | 25.52 |
solid yield/% | 86.19 | 77.77 | 43.35 | 56.94 | 81.37 | ||
m=0.50 | |||||||
water | W | 100 | |||||
mother liquid after transformation | L4 | 170 | 2.40 | 2.86 | 4.72 | 16.05 | 5.44 |
solid after transformation | S4 | 130 | 13.38 | 10.78 | 3.94 | 22.90 | 25.75 |
solid yield/% | 81.00 | 74.24 | 38.96 | 52.18 | 78.35 | ||
m=0.60 | |||||||
water | W | 120 | |||||
mother liquid after transformation | L5 | 200 | 2.37 | 2.84 | 4.57 | 15.52 | 5.48 |
solid after transformation | S5 | 120 | 14.41 | 11.42 | 3.84 | 22.59 | 28.70 |
solid yield/% | 78.47 | 70.70 | 33.52 | 46.62 | 75.86 |
Name | No. | Phase composition/% | J?necke index(Mg2++K2 2++SO4 2-=100 mol) | |||||
---|---|---|---|---|---|---|---|---|
NaCl | Kai | KCl | Pic | Mg2+ | K2 2+ | SO4 2- | ||
K-Mg mixed salt | S0 | 27.61 | 56.21 | 8.45(Car) | 2.69(Bis) | 43.17 | 20.54 | 36.29 |
solid after transformation | S2 | 32.94 | 35.71 | 0.93 | 22.05 | 34.02 | 22.70 | 43.28 |
S3 | 33.10 | 17.67 | 0.62 | 38.94 | 29.58 | 23.96 | 46.46 | |
S4 | 34.01 | 13.77 | 0.57 | 42.64 | 28.54 | 24.27 | 47.19 | |
S5 | 36.63 | 2.54 | 56.72 | 26.21 | 24.23 | 49.56 | ||
S1 | 35.78 | 64.22 | 25.00 | 25.00 | 50.00 | |||
KCl | A | 0.00 | 100.00 | 0.00 | ||||
Bis | C | 100.00 | 0.00 | 0.00 | ||||
Car | D | 66.67 | 33.33 | 0.00 | ||||
Kai | E | 40.00 | 20.00 | 40.00 | ||||
Pic | F | 25.00 | 25.00 | 50.00 |
Table 4 Phase composition and J?necke index of solid after transformation
Name | No. | Phase composition/% | J?necke index(Mg2++K2 2++SO4 2-=100 mol) | |||||
---|---|---|---|---|---|---|---|---|
NaCl | Kai | KCl | Pic | Mg2+ | K2 2+ | SO4 2- | ||
K-Mg mixed salt | S0 | 27.61 | 56.21 | 8.45(Car) | 2.69(Bis) | 43.17 | 20.54 | 36.29 |
solid after transformation | S2 | 32.94 | 35.71 | 0.93 | 22.05 | 34.02 | 22.70 | 43.28 |
S3 | 33.10 | 17.67 | 0.62 | 38.94 | 29.58 | 23.96 | 46.46 | |
S4 | 34.01 | 13.77 | 0.57 | 42.64 | 28.54 | 24.27 | 47.19 | |
S5 | 36.63 | 2.54 | 56.72 | 26.21 | 24.23 | 49.56 | ||
S1 | 35.78 | 64.22 | 25.00 | 25.00 | 50.00 | |||
KCl | A | 0.00 | 100.00 | 0.00 | ||||
Bis | C | 100.00 | 0.00 | 0.00 | ||||
Car | D | 66.67 | 33.33 | 0.00 | ||||
Kai | E | 40.00 | 20.00 | 40.00 | ||||
Pic | F | 25.00 | 25.00 | 50.00 |
No. | Salt molarity/(mol/L) | J?necke index(Mg2++K2 2++SO4 2-=100 mol) | |||||||
---|---|---|---|---|---|---|---|---|---|
c(Na2Cl2) | c(K2Cl2) | c(MgSO4) | c(MgCl2) | Mg2+ | K2 2+ | SO4 2- | Na2 2+ | H2O | |
L2 | 0.5174 | 0.4236 | 0.7248 | 1.9907 | 70.28 | 10.96 | 18.76 | 13.39 | 1220.53 |
L3 | 0.5279 | 0.4556 | 0.7079 | 1.8636 | 68.85 | 12.20 | 18.95 | 14.13 | 1274.77 |
L4 | 0.6524 | 0.4572 | 0.7079 | 1.7196 | 67.57 | 12.72 | 19.70 | 18.16 | 1323.60 |
L5 | 0.6448 | 0.4540 | 0.7131 | 1.6373 | 66.82 | 12.91 | 20.27 | 18.33 | 1365.45 |
L1 | 0.7748 | 0.4876 | 0.6129 | 1.5986 | 66.77 | 14.72 | 18.50 | 23.39 | 1442.87 |
Table 5 Salt molarity and J?necke index of mother liquid after transformation
No. | Salt molarity/(mol/L) | J?necke index(Mg2++K2 2++SO4 2-=100 mol) | |||||||
---|---|---|---|---|---|---|---|---|---|
c(Na2Cl2) | c(K2Cl2) | c(MgSO4) | c(MgCl2) | Mg2+ | K2 2+ | SO4 2- | Na2 2+ | H2O | |
L2 | 0.5174 | 0.4236 | 0.7248 | 1.9907 | 70.28 | 10.96 | 18.76 | 13.39 | 1220.53 |
L3 | 0.5279 | 0.4556 | 0.7079 | 1.8636 | 68.85 | 12.20 | 18.95 | 14.13 | 1274.77 |
L4 | 0.6524 | 0.4572 | 0.7079 | 1.7196 | 67.57 | 12.72 | 19.70 | 18.16 | 1323.60 |
L5 | 0.6448 | 0.4540 | 0.7131 | 1.6373 | 66.82 | 12.91 | 20.27 | 18.33 | 1365.45 |
L1 | 0.7748 | 0.4876 | 0.6129 | 1.5986 | 66.77 | 14.72 | 18.50 | 23.39 | 1442.87 |
Name | No. | Quantity/g | Chemical composition/% | Phase composition/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Na+ | K+ | Mg2+ | Cl- | SO4 2- | NaCl | Kai | KCl | Pic | |||
solid after transformation | S4-1 | 180 | 13.38 | 10.78 | 3.94 | 22.90 | 25.75 | 34.01 | 13.74 | 1.15 | 42.64 |
obverse flotation collector | Y1 | 0.12 | |||||||||
collector-solid mass ratio | y1 | y1=670 g(collector):1 t(solid) | |||||||||
obverse flotation bubbles | Pic1 | 105 | 1.46 | 17.40 | 5.82 | 3.98 | 42.03 | 3.71 | 10.10 | 1.11 | 79.79 |
obverse flotation tailings | A | 75 | 30.11 | 1.48 | 0.54 | 46.70 | 3.60 | 76.54 | 1.72 | 0.071 | 6.10 |
bubbles yield/% | 6.35 | 94.27 | 93.78 | 94.23 | 6.35 | 89.16 | 95.63 | 94.82 | |||
solid after transformation | S4-2 | 180 | 14.40 | 11.02 | 3.86 | 23.59 | 26.94 | 36.61 | 9.14 | 0.24 | 48.89 |
reverse flotation collector | Y2 | 0.12 | |||||||||
collector-solid mass ratio | y2 | y2=670 g(collector):1 t(solid) | |||||||||
reverse flotation bubbles | B | 73 | 30.00 | 3.65 | 1.39 | 47.28 | 8.61 | 76.26 | 6.08 | 0.57 | 13.02 |
reverse flotation tailings | Pic2 | 107 | 2.70 | 16.67 | 5.63 | 5.83 | 40.47 | 6.86 | 10.26 | 0.75 | 76.39 |
tailings yield/% | 11.65 | 87.00 | 85.58 | 87.32 | 11.65 | 71.21 | 65.85 | 89.58 |
Table 6 Flotation experimental results of solid after transformation
Name | No. | Quantity/g | Chemical composition/% | Phase composition/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Na+ | K+ | Mg2+ | Cl- | SO4 2- | NaCl | Kai | KCl | Pic | |||
solid after transformation | S4-1 | 180 | 13.38 | 10.78 | 3.94 | 22.90 | 25.75 | 34.01 | 13.74 | 1.15 | 42.64 |
obverse flotation collector | Y1 | 0.12 | |||||||||
collector-solid mass ratio | y1 | y1=670 g(collector):1 t(solid) | |||||||||
obverse flotation bubbles | Pic1 | 105 | 1.46 | 17.40 | 5.82 | 3.98 | 42.03 | 3.71 | 10.10 | 1.11 | 79.79 |
obverse flotation tailings | A | 75 | 30.11 | 1.48 | 0.54 | 46.70 | 3.60 | 76.54 | 1.72 | 0.071 | 6.10 |
bubbles yield/% | 6.35 | 94.27 | 93.78 | 94.23 | 6.35 | 89.16 | 95.63 | 94.82 | |||
solid after transformation | S4-2 | 180 | 14.40 | 11.02 | 3.86 | 23.59 | 26.94 | 36.61 | 9.14 | 0.24 | 48.89 |
reverse flotation collector | Y2 | 0.12 | |||||||||
collector-solid mass ratio | y2 | y2=670 g(collector):1 t(solid) | |||||||||
reverse flotation bubbles | B | 73 | 30.00 | 3.65 | 1.39 | 47.28 | 8.61 | 76.26 | 6.08 | 0.57 | 13.02 |
reverse flotation tailings | Pic2 | 107 | 2.70 | 16.67 | 5.63 | 5.83 | 40.47 | 6.86 | 10.26 | 0.75 | 76.39 |
tailings yield/% | 11.65 | 87.00 | 85.58 | 87.32 | 11.65 | 71.21 | 65.85 | 89.58 |
1 | 郭如新 . 硫酸钾镁肥的过去、现状和未来前景[J]. 磷肥与复肥, 2009, 24(3): 59-61. |
Guo R X . Past, current status and future prospect of langbeinite fertilizer[J]. Phosphate & Compound Fertilizer, 2009, 24(3): 59-61. | |
2 | 赵永宝 . 近几年钾肥生产技术发展现状[J]. 盐业与化工, 2016, 45(4): 9-13. |
Zhao Y B . Production technological development status of potash in recent years[J]. Journal of Salt and Chemical Industry, 2016, 45(4): 9-13. | |
3 | 宋彭生, 李武, 孙柏, 等 . 盐湖资源开发利用进展[J]. 无机化学学报, 2011, 27(5): 801-815. |
Song P S , Li W , Sun B , et al . Recent development on comprehensive utilization of salt lake resources[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(5): 801-815. | |
4 | 王长青, 宋彭生 . 硫酸盐型盐湖卤水天然制取软钾镁矾[J]. 应用化学, 1991, 8(1): 28-32. |
Wang C Q , Song P S . Preparation of schoenite from brine by natural evaporation[J]. Chinese Journal of Applied Chemistry, 1991, 8(1): 28-32. | |
5 | 金作美, 肖显志, 梁式梅 . (Na+、K+、Mg2+), (Cl-、SO4 2-), H2O五元系统介稳平衡的研究[J]. 化学学报, 1980, 38(4): 313-321. |
Jin Z M , Xiao X Z , Liang S M . Study of the metastable equilibrium for pentanary system of (Na+,K+,Mg2+), (Cl-,SO4 2-), H2O[J]. Acta Chimica Sinica, 1980, 38(4): 313-321. | |
6 | 李刚, 吴景泉 . 利用盐田钾镁混盐矿制取软钾镁矾的研究[J]. 盐湖研究, 1998, 6(2/3): 49-52. |
Li G , Wu J Q . Study on the separation of picromerite from the mixture of potassium and magnesium produced from salar ponds[J]. Journal of Salt Lake Science, 1998, 6(2/3): 49-52. | |
7 | 谈霞, 李宏灿 . 热溶结晶法制取硫酸钾镁肥的实验研究[J]. 无机盐工业, 2013, 45(5): 35-37. |
Tan X , Li H C . Study on preparation of potassium-magnesium sulfate fertilizer with thermally dissolved cold crystallization method[J]. Inorganic Chemicals Industry, 2013, 45(5): 35-37. | |
8 | 程怀德, 马海州 . 利用硫酸盐型盐湖资源制取软钾镁矾的研究[J]. 盐业与化工, 2008, 37(3): 24-26. |
Cheng H D , Ma H Z . Study of preparing schoenite from sulfate-type saline resources[J]. Journal of Salt and Chemical Industry, 2008, 37(3): 24-26. | |
9 | 李陇岗, 曾英, 杨建元, 等 . 钾镁混盐“反浮选-转化法”制取软钾镁矾的研究[J]. 盐业与化工, 2012, 41(11): 11-14. |
Li L G , Zeng Y , Yang J Y , et al . Study on the preparation of schoenite from K-Mg mixing salt with reverse flotation and convention method[J]. Journal of Salt and Chemical Industry, 2012, 41(11): 11-14. | |
10 | 甘顺鹏, 季荣, 李昱昀 . 新型捕收剂CB-805浮选制取硫酸钾镁肥工艺研究[J]. 化工矿物与加工, 2013, (11): 7-9. |
Gan S P , Ji R , Li Y Y . Research on process of potash magnesium sulphate fertilizer production by flotation with new collector CB-805[J]. Industrial Minerals & Processing, 2013, (11): 7-9. | |
11 | 黄尚泉 . 钾混盐矿制取硫酸钾工艺研究[J]. 化工矿物与加工, 2013, (8): 6-7. |
Huang S Q . Study of process for production of potassium sulfate from potassium mixed salt[J]. Industrial Minerals & Processing, 2013, (8): 6-7. | |
12 | 谈霞, 杨蓉飞 . 硫酸镁亚型盐湖钾肥生产中尾矿回收钾镁肥的研究[J]. 无机盐工业, 2014, 46(10): 50-52. |
Tan X , Yang R F . Research on recycling of potassium magnesium fertilizer from tailings in potash production of subtype magnesium sulfate salt lake[J]. Inorganic Chemicals Industry, 2014, 46(10): 50-52. | |
13 | 张明强, 胡勇 . 新疆某钾镁盐矿浮选回收软钾镁矾试验[J]. 现代矿业, 2017, (4): 136-138. |
Zhang M Q , Hu Y . Research on recycling of schoenite from K-Mg mixed salt of Xinjiang by flotation[J]. Modern Mining, 2017, (4): 136-138. | |
14 | 时历杰, 王敏 . 柴达木盆地一里坪盐湖卤水水化学及夏季蒸发中钾、锂、硼行为[J]. 湖泊科学, 2019, 31(2): 590-608. |
Shi L J , Wang M . Hydrochemistry and behavior of K, Li and B in summer evaporation of Yiliping salt lake brine in Qaidam basin[J]. Journal of Lake Sciences, 2019, 31(2): 590-608. | |
15 | 金作美, 周惠南, 王励生 . Na+, K+, Mg2+//Cl-, SO4 2--H2O五元体系15℃介稳相图研究[J]. 高等学校化学学报, 2002, 23(4): 690-694. |
Jin Z M , Zhou H N , Wang L S . Studies on the metastable phase equilibrium of Na+, K+, Mg2+//Cl-, SO4 2--H2O quinary system at 15℃[J]. Chemical Journal of Chinese Universities, 2002, 23(4): 690-694. | |
16 | 中国科学院青海盐湖研究所分析室 . 卤水和盐的分析方法[M]. 2版. 北京: 科学出版社, 1988. |
Qinghai Institute of Salt Lakes, Chinese Academy of Sciences . Analysis Methods for Brines and Salts[M]. 2nd ed. Beijing: Science Press, 1988. | |
17 | Neitzel U E G . Method for the production of high-grade kainite: US3589871[P]. 1971-06-29. |
18 | Choudhari B P . Deposition of primary kainite from marine bitterns in solar evaporation[J]. J. Appl. Chem. Biotechnol., 1971, 21(9): 266-267. |
19 | 毕思峰 . 一里坪盐湖卤水的自然及冷冻蒸发实验[D]. 西宁: 青海大学, 2016. |
Bi S F . Study on natural and freezing evaporation of Yiliping brine[D]. Xining: Qinghai University, 2016. | |
20 | Bi S F , Cui X M . Comparison between simulated evaporation and natural evaporation of inter-crystal brine in Yiliping salt lake[J]. Carbonates and Evaporites, 2018, 33(2): 235-241. |
21 | 安东, 张志宏, 付振海, 等 . 硫酸盐型卤水蒸发过程钾盐镁矾结晶区域研究[J]. 无机盐工业, 2015, 47(8): 49-52. |
An D , Zhang Z H , Fu Z H , et al . Crystallizing region of kainite in sulfate-type brine evaporation process[J]. Inorganic Chemicals Industry, 2015, 47(8): 49-52. | |
22 | Garrett D E . Potash—Deposits, Processing, Properties and Uses[M]. London: Chapman & Hall, 1996. |
23 | 沈菊, 张彩岳, 许显花, 等 . 1980—2015年柴达木盆地地表温度变化特征[J]. 中国农学通报, 2016, 32(35): 58-64. |
Shen J , Zhang C Y , Xu X H , et al . Variation characteristics of surface temperature in Qaidam basin 1980—2015[J]. Chinese Agricultural Science Bulletin, 2016, 32(35): 58-64. | |
24 | 金作美, 周惠南, 王励生 . Na+, K+, Mg2+//Cl-, SO4 2--H2O五元体系35℃介稳相图研究[J]. 高等学校化学学报, 2001, 22(4): 634-638. |
Jin Z M , Zhou H N , Wang L S . Studies on the metastable phase equilibrium of Na+, K+, Mg2+//Cl-, SO4 2--H2O quinary system at 35℃[J]. Chemical Journal of Chinese Universities, 2001, 22(4): 634-638. | |
25 | 梁保民 . 水盐体系相图原理及运用[M]. 北京: 轻工业出版社, 1986. |
Liang B M . Salt-water System Phase Diagrams: Principles and Applications[M]. Beijing: China Light Industry Press, 1986. | |
26 | Hadzeriga P . Dynamic equilibria in the solar evaporation of the Great Salt Lake brine[J]. AIME Transactions, 1967, 238: 413-419. |
27 | Neitzel U . 100 Jahre Langbeinit[J]. Kali und Steinsalz, 1992, 11(1/2): 7-13. |
28 | Neitzel U . 无水钾镁矾的100年[J]. 王连第, 译. 化工矿产地质, 1995, 17(4): 281-285. |
Neitzel U . 100 Jahre Langbeinit[J]. Wang L D, trans. Geology of Chemical Minerals, 1995, 17(4): 281-285. | |
29 | Hancer M , Miller J D . The flotation chemistry of potassium double salts: schoenite, kainite, and carnallite[J]. Mine. Eng., 2000, 13(14/15): 1483-1493. |
30 | 权朝明 . 十二烷基吗啉与氯化钠、氯化钾及光卤石表面作用机理[D]. 北京:中国科学院大学, 2017. |
Quan C M . Surface interaction mechanism of dodecylmorpholine with sodium chloride, potassium chloride and carnallite[D]. Beijing: University of Chinese Academy of Sciences, 2017. | |
31 | 张婉萍, 宋兴福, 李晓松, 等 . 十二烷基吗啉选择性浮选氯化钠颗粒的作用原理[J]. 化工学报, 2006, 57(5): 1171-1176. |
Zhang W P , Song X F , Li X S , et al . Selective flotation mechanism sodium chloride particle with dodecylmorpholine[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(5): 1171-1176. |
[1] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[2] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[3] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[4] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
[5] | Zhiyuan JIN, Guorong SHAN, Pengju PAN. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer [J]. CIESC Journal, 2023, 74(2): 916-923. |
[6] | Huan ZHOU, Mengli ZHANG, Qing HAO, Si WU, Jie LI, Cunbing XU. Process mechanism and dynamic behaviors of magnesium sulfate type carnallite converting into kainite [J]. CIESC Journal, 2022, 73(9): 3841-3850. |
[7] | Chengwei LI, Huayong LUO, Mingxuan ZHANG, Peng LIAO, Qian FANG, Hongwei RONG, Jingyin WANG. Microfludically-generated lanthanum hydroxide cross-linked chitosan microspheres for phosphate removal [J]. CIESC Journal, 2022, 73(9): 3929-3939. |
[8] | Jianing LIU, Jiahao MA, Junying ZHANG, Jue CHENG. Construction and properties of sequential dual thermal curing thiol-acrylate-epoxy 3D network [J]. CIESC Journal, 2022, 73(9): 4173-4186. |
[9] | Yafu LI, Liangliang FU, Haolong BAI, Dingrong BAI, Guangwen XU. The simultaneous synthesis of high-quality forsterite and sintered magnesia from magnesite flotation tailings [J]. CIESC Journal, 2022, 73(8): 3679-3687. |
[10] | Lei ZHONG, Xueqing QIU, Wenli ZHANG. Advances in lignin-derived carbon anodes for alkali metal ion batteries [J]. CIESC Journal, 2022, 73(8): 3369-3380. |
[11] | Duanhui GAO, Weiqiang XIAO, Feng GAO, Qian XIA, Manqiu WANG, Xinbo LU, Xiaoli ZHAN, Qinghua ZHANG. Preparation and application of polyimide-based aerogels [J]. CIESC Journal, 2022, 73(7): 2757-2773. |
[12] | Chaoyu SONG, Yaxuan XIONG, Jinhua ZHANG, Yuhe JIN, Chenhua YAO, Huixiang WANG, Yulong DING. Preparation and performance study of incinerated slag based shape-stable phase change composites [J]. CIESC Journal, 2022, 73(5): 2279-2287. |
[13] | Hang GUO, Wenli HAN, Xiaoling DONG, Wencui LI. Adjusting carbonization process to optimize sodium storage performance of coal-based hard carbon anode [J]. CIESC Journal, 2022, 73(4): 1794-1806. |
[14] | Chaoqun XU, Juan YU, Yimin FAN, Jifu WANG, Fuxiang CHU. Chemical modification of nanocellulose via atom transfer radical polymerization: strategy, applications and challenges [J]. CIESC Journal, 2022, 73(3): 1022-1043. |
[15] | ZHOU Dongyi, XIAO Xianghua, XIAO Biao, LIU Yicai. Method of determining optimum mass ratio of fatty acids in composite phase change materials for thermal energy storage [J]. CIESC Journal, 2021, 72(S1): 560-566. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||