CIESC Journal ›› 2023, Vol. 74 ›› Issue (7): 3103-3115.DOI: 10.11949/0438-1157.20230320
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Wentao WU1(), Liangyong CHU1(), Lingjie ZHANG2, Weimin TAN3, Liming SHEN1, Ningzhong BAO1()
Received:
2023-04-04
Revised:
2023-07-05
Online:
2023-08-31
Published:
2023-07-05
Contact:
Liangyong CHU, Ningzhong BAO
吴文涛1(), 褚良永1(), 张玲洁2, 谭伟民3, 沈丽明1, 暴宁钟1()
通讯作者:
褚良永,暴宁钟
作者简介:
吴文涛(1997—),男,硕士研究生,202061104097@njtech.edu.cn
基金资助:
CLC Number:
Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules[J]. CIESC Journal, 2023, 74(7): 3103-3115.
吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115.
乳化剂 | 原材料类型 | HLB值 | pH |
---|---|---|---|
聚乙烯醇(PVA) | 石油基 | 12.3 | 5.0~7.0 |
十二烷基硫酸钠(SDS) | 石油基 | 15 | 6.0~9.0 |
腰果酚基表面活性剂NSF3007C | 生物基 | 10.8 | 4.0~7.0 |
Table 1 The properties of the emulsifier
乳化剂 | 原材料类型 | HLB值 | pH |
---|---|---|---|
聚乙烯醇(PVA) | 石油基 | 12.3 | 5.0~7.0 |
十二烷基硫酸钠(SDS) | 石油基 | 15 | 6.0~9.0 |
腰果酚基表面活性剂NSF3007C | 生物基 | 10.8 | 4.0~7.0 |
序号 | 工艺参数 | 基础水平 | 最终水平 |
---|---|---|---|
1 | 蒸发温度/℃ | 20 | 80 |
2 | 乳化剂浓度/%(质量) | 1 | 5 |
3 | 转速/(r/min) | 2000 | 3500 |
4 | 芯壁比 | 1∶2 | 3∶1 |
Table 2 Process parameters affecting the preparation of microcapsules
序号 | 工艺参数 | 基础水平 | 最终水平 |
---|---|---|---|
1 | 蒸发温度/℃ | 20 | 80 |
2 | 乳化剂浓度/%(质量) | 1 | 5 |
3 | 转速/(r/min) | 2000 | 3500 |
4 | 芯壁比 | 1∶2 | 3∶1 |
温度/℃ | 质量损失/% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
芯壁比 | 转速/(r/min) | 乳化剂浓度/%(质量) | |||||||||||
1∶2 | 1∶1 | 2∶1 | 3∶1 | 2000 | 2500 | 3000 | 3500 | 1 | 2 | 3 | 4 | 5 | |
60 | 1.7 | 0.8 | 1.4 | 0.6 | 1.1 | 0.8 | 0.4 | 1.7 | 1.4 | 0.8 | 0.8 | 6 | 0.7 |
80 | 1.8 | 1.3 | 2.2 | 4.6 | 1.6 | 1.3 | 4.1 | 2.2 | 1.5 | 1.3 | 1.0 | 11 | 0.9 |
100 | 2 | 1.9 | 4.7 | 5.4 | 3 | 1.9 | 4.9 | 3.4 | 2.4 | 1.9 | 1.4 | 12 | 1 |
120 | 4.5 | 5.7 | 5.6 | 7.1 | 5.3 | 5.7 | 5.8 | 7.3 | 5.7 | 2.8 | 2.1 | 14 | 5 |
Table 3 Mass loss of E-capsule prepared under different process conditions at a solvent evaporation temperature of 40℃ after storage for 12 h
温度/℃ | 质量损失/% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
芯壁比 | 转速/(r/min) | 乳化剂浓度/%(质量) | |||||||||||
1∶2 | 1∶1 | 2∶1 | 3∶1 | 2000 | 2500 | 3000 | 3500 | 1 | 2 | 3 | 4 | 5 | |
60 | 1.7 | 0.8 | 1.4 | 0.6 | 1.1 | 0.8 | 0.4 | 1.7 | 1.4 | 0.8 | 0.8 | 6 | 0.7 |
80 | 1.8 | 1.3 | 2.2 | 4.6 | 1.6 | 1.3 | 4.1 | 2.2 | 1.5 | 1.3 | 1.0 | 11 | 0.9 |
100 | 2 | 1.9 | 4.7 | 5.4 | 3 | 1.9 | 4.9 | 3.4 | 2.4 | 1.9 | 1.4 | 12 | 1 |
120 | 4.5 | 5.7 | 5.6 | 7.1 | 5.3 | 5.7 | 5.8 | 7.3 | 5.7 | 2.8 | 2.1 | 14 | 5 |
温度/℃ | 质量损失/% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
芯壁比 | 转速/(r/min) | 乳化剂浓度/%(质量) | |||||||||||
1∶2 | 1∶1 | 2∶1 | 3∶1 | 2000 | 2500 | 3000 | 3500 | 1 | 2 | 3 | 4 | 5 | |
60 | 1.3 | 1.5 | 0.6 | 0.9 | 0.9 | 1.3 | 4.2 | 0.8 | 1.1 | 1.3 | 0.5 | 3.2 | 1.6 |
80 | 1.3 | 1.7 | 0.7 | 2.4 | 0.9 | 1.3 | 5 | 1 | 1.4 | 1.3 | 1 | 4.2 | 2.2 |
100 | 1.4 | 1.7 | 1.2 | 2.6 | 1.3 | 1.4 | 7.1 | 1.8 | 1.9 | 1.4 | 1.5 | 5.6 | 2.2 |
120 | 1.5 | 2 | 5. | 5.7 | 1.4 | 1.5 | 9 | 2.2 | 5.2 | 1.5 | 3 | 9.7 | 4 |
Table 4 Mass loss of Ami-capsule prepared under different process conditions at a solvent evaporation temperature of 40℃ after storage for 12 h
温度/℃ | 质量损失/% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
芯壁比 | 转速/(r/min) | 乳化剂浓度/%(质量) | |||||||||||
1∶2 | 1∶1 | 2∶1 | 3∶1 | 2000 | 2500 | 3000 | 3500 | 1 | 2 | 3 | 4 | 5 | |
60 | 1.3 | 1.5 | 0.6 | 0.9 | 0.9 | 1.3 | 4.2 | 0.8 | 1.1 | 1.3 | 0.5 | 3.2 | 1.6 |
80 | 1.3 | 1.7 | 0.7 | 2.4 | 0.9 | 1.3 | 5 | 1 | 1.4 | 1.3 | 1 | 4.2 | 2.2 |
100 | 1.4 | 1.7 | 1.2 | 2.6 | 1.3 | 1.4 | 7.1 | 1.8 | 1.9 | 1.4 | 1.5 | 5.6 | 2.2 |
120 | 1.5 | 2 | 5. | 5.7 | 1.4 | 1.5 | 9 | 2.2 | 5.2 | 1.5 | 3 | 9.7 | 4 |
Fig.13 (a) Stress-strain curves of original and healed TDCB coating samples embedded with bio-based microcapsules; (b) Bode curves of self-healing coating with “X” scratch on the surface immersed in 3.5%(mass) NaCl solution; (c) SEM image of self-healing coatings with scratched surface; (d) SEM image of the scratched self-healing coating after healing
1 | 唐二军, 姚蒙蒙, 郭晓峰, 等. 水性环氧丙烯酸酯乳液涂层成膜性能[J]. 化工学报, 2018, 69(S1): 143-147. |
Tang E J, Yao M M, Guo X F, et al. Film formation for aqueous epoxy acrylate latex coatings[J]. CIESC Journal, 2018, 69(S1): 143-147. | |
2 | Xie L, Wang L, Fan X. The application of epoxy anticorrosive coating technology in metal corrosion prevention of chemical equipment[J]. Agro Food Industry Hi Tech, 2017, 28(1): 1345-1349. |
3 | Ou B L, Wang Y W, Lu Y. A review on fundamentals and strategy of epoxy-resin-based anticorrosive coating materials[J]. Polymer-Plastics Technology and Materials, 2021, 60(6): 601-625. |
4 | Bratychak M, Brostow W, Grynyshyn O, et al. Synthesis and characterization of petroleum resins with epoxy groups[J]. Materials Research Innovations, 2003, 7(3): 167-171. |
5 | Pradhan S, Pandey P, Mohanty S, et al. Insight on the chemistry of epoxy and its curing for coating applications: a detailed investigation and future perspectives[J]. Polymer-Plastics Technology and Engineering, 2016, 55(8): 862-877. |
6 | 何吉喆, 刘明言, 徐杨书函. 环氧豆油树脂涂层的防腐性能研究[J]. 化工学报, 2021, 72(2): 1067-1077. |
He J Z, Liu M Y, Xu Y S H. Study on anticorrosive properties of epoxy soybean oil resin coating[J]. CIESC Journal, 2021, 72(2): 1067-1077. | |
7 | Zhen X, Li H W, Xu Z B, et al. Facile synthesis of lignin-based epoxy resins with excellent thermal-mechanical performance[J]. International Journal of Biological Macromolecules, 2021, 182: 276-285. |
8 | 郑杰元, 张先伟, 万金涛, 等. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932. |
Zheng J Y, Zhang X W, Wan J T, et al. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin[J]. CIESC Journal, 2023, 74(2): 924-932. | |
9 | Wu H, Liu C B, Cheng L, et al. Enhancing the mechanical and tribological properties of epoxy composites via incorporation of reactive bio-based epoxy functionalized graphene oxide[J]. RSC Advances, 2020, 10(66): 40148-40156. |
10 | Babahan-Bircan I, Demirkaya I, Hasan S O H, et al. Comparison of new bio-based epoxide-amine coatings with their nanocomposite coating derivatives (graphene, CNT, and fullerene) as replacements for BPA[J]. Progress in Organic Coatings, 2022, 165: 106714. |
11 | Ge C, Xu X B, Ma F, et al. Biomimetic modification of water-borne polymer coating with carnauba wax for controlled release of urea[J]. International Journal of Molecular Sciences, 2022, 23(13): 7422. |
12 | Nesterova T, Dam-Johansen K, Pedersen L T, et al. Microcapsule-based self-healing anticorrosive coatings: capsule size, coating formulation, and exposure testing[J]. Progress in Organic Coatings, 2012, 75(4): 309-318. |
13 | 张伦亮, 万里鹰, 黄军同, 等. 基于Diels-Alder动态共价键的含PEGDE片段自修复环氧树脂性能研究[J]. 化工学报, 2020, 71(6): 2871-2879. |
Zhang L L, Wan L Y, Huang J T, et al. Properties of self-healing epoxy resin containing PEGDE segments based on Diels-Alder dynamic covalent bond[J]. CIESC Journal, 2020, 71(6): 2871-2879. | |
14 | Huang Y, Wang P J, Tan W M, et al. Photothermal and pH dual-responsive self-healing coating for smart corrosion protection[J]. Journal of Materials Science & Technology, 2022, 107: 34-42. |
15 | Ye K X, Bi Z X, Cui G, et al. External self-healing coatings in anticorrosion applications: a review[J]. Corrosion, 2020, 76(3): 279-298. |
16 | Christopher J E P, Sultan M T H, Selvan C P, et al. Manufacturing challenges in self-healing technology for polymer composites — a review[J]. Journal of Materials Research and Technology - JMR & T, 2020, 9(4): 7370-7379. |
17 | Schreiner C, Scharf S, Stenzel V, et al. Self-healing through microencapsulated agents for protective coatings[J]. Journal of Coatings Technology and Research, 2017, 14(4): 809-816. |
18 | Wu G, An J L, Sun D W, et al. Robust microcapsules with polyurea/silica hybrid shell for one-part self-healing anticorrosion coatings[J]. Journal of Materials Chemistry A, 2014, 2(30): 11614-11620. |
19 | Xu C Y, Chen Z, Wang C X, et al. Fabrication of dual self-healing multifunctional coating based on multicompartment microcapsules[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 59298-59309. |
20 | Wang H R, Zhou Q X. Evaluation and failure analysis of linseed oil encapsulated self-healing anticorrosive coating[J]. Progress in Organic Coatings, 2018, 118: 108-115. |
21 | Farzi G, Davoodi A, Ahmadi A, et al. Encapsulation of cerium nitrate within poly(urea-formaldehyde) microcapsules for the development of self-healing epoxy-based coating[J]. ACS Omega, 2021, 6(46): 31147-31153. |
22 | White S R, Sottos N R, Geubelle P H, et al. Autonomic healing of polymer composites[J]. Nature, 2001, 409(6822): 794-797. |
23 | Song Y, Chen K F, Wang J J, et al. Synthesis of polyurethane/poly(urea-formaldehyde) double-shelled microcapsules for self-healing anticorrosion coatings[J]. Chinese Journal of Polymer Science, 2020, 38(1): 45-52. |
24 | 倪卓, 林煜豪, 黄苇颖, 等. 环氧树脂微胶囊合成及其反应动力学[J]. 化工学报, 2018, 69(4): 1790-1798. |
Ni Z, Lin Y H, Huang W Y, et al. Preparation and reaction kinetics of epoxy resin microcapsules[J]. CIESC Journal, 2018, 69(4): 1790-1798. | |
25 | Chen Q, Zhang L Y, Zhang J L, et al. Bio-based polybenzoxazines coatings for efficient marine antifouling[J]. Progress in Organic Coatings, 2023, 174: 107298. |
26 | Parihar S, Gaur B. Thermo-reversible self-healing polymeric coatings derived from gum rosin[J]. Progress in Organic Coatings, 2022, 168: 106889. |
27 | Thakur T, Gaur B, Singha A S. Bio-based epoxy/imidoamine encapsulated microcapsules and their application for high performance self-healing coatings[J]. Progress in Organic Coatings, 2021, 159: 106436. |
28 | Shahabudin N, Yahya R, Gan S N. Microcapsules filled with a palm oil-based alkyd as healing agent for epoxy matrix[J]. Polymers, 2016, 8(4): 125. |
29 | Ataei S, Hassan A, Azari P, et al. Electrosprayed PMMA microcapsules containing green soybean oil-based acrylated epoxy and a thiol: a novel resin for smart self-healing coatings[J]. Smart Materials and Structures, 2020, 29(8): 085037. |
30 | Ahangaran F, Hayaty M, Navarchian A H, et al. Development of self-healing epoxy composites via incorporation of microencapsulated epoxy and mercaptan in poly(methyl methacrylate) shell[J]. Polymer Testing, 2019, 73: 395-403. |
31 | Lv K, Liu D, Li W, et al. Preparation and characterization of E7-PMMA microcapsules by solvent evaporation[J]. Molecular Crystals and Liquid Crystals, 2012, 557(1): 217-227. |
32 | Ahangaran F, Hayaty M, Navarchian A H. Morphological study of polymethyl methacrylate microcapsules filled with self-healing agents[J]. Applied Surface Science, 2017, 399: 721-731. |
33 | Xiao C D, Shen X C, Tao L. Modified emulsion solvent evaporation method for fabricating core-shell microspheres[J]. International Journal of Pharmaceutics, 2013, 452(1/2): 227-232. |
34 | Boumezgane O, Suriano R, Fedel M, et al. Self-healing epoxy coatings with microencapsulated ionic PDMS oligomers for corrosion protection based on supramolecular acid-base interactions[J]. Progress in Organic Coatings, 2022, 162: 106558. |
35 | Li Q, Mishra A K, Kim N H, et al. Effects of processing conditions of poly(methylmethacrylate) encapsulated liquid curing agent on the properties of self-healing composites[J]. Composites Part B: Engineering, 2013, 49: 6-15. |
36 | Cho S H, Andersson H M, White S R, et al. Polydimethylsiloxane-based self-healing materials[J]. Advanced Materials, 2006, 18(8): 997-1000. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[3] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[4] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[5] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[6] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[7] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[8] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[9] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[10] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[11] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[12] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[13] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[14] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[15] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 344
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 188
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||