CIESC Journal ›› 2020, Vol. 71 ›› Issue (2): 698-707.DOI: 10.11949/0438-1157.20190771
• Process system engineering • Previous Articles Next Articles
Guihua HU1,2(),Zhencheng YE1,2,Wenli DU1,2()
Received:
2019-07-05
Revised:
2019-09-23
Online:
2020-02-05
Published:
2020-02-05
Contact:
Wenli DU
通讯作者:
杜文莉
作者简介:
胡贵华(1974—),男,博士,副研究员,基金资助:
CLC Number:
Guihua HU, Zhencheng YE, Wenli DU. Effect of combustion-supporting air on NOx emission of ethylene cracking furnace[J]. CIESC Journal, 2020, 71(2): 698-707.
胡贵华, 叶贞成, 杜文莉. 助燃空气对乙烯裂解炉NOx排放的影响[J]. 化工学报, 2020, 71(2): 698-707.
Add to citation manager EndNote|Ris|BibTeX
结构 | 直径/长×宽/mm | 温度/K | 速度/(m/s) | 组分/(质量分数) | ||||
---|---|---|---|---|---|---|---|---|
CH4 | O2 | N2 | CO2 | H2O | ||||
主火焰 | 7.2 | 294 | 49.6 | 0.156 | 0.197 | 0.647 | 0 | 0 |
值班火焰 | 18.2 | 1880 | 11.4 | 0 | 0.054 | 0.742 | 0.11 | 0.094 |
空气伴流 | 300×300 | 291 | 0.9 | 0 | 0.23 | 0.77 | 0 | 0 |
Table 1 Inlet velocity and composition conditions of Sandia Flame D
结构 | 直径/长×宽/mm | 温度/K | 速度/(m/s) | 组分/(质量分数) | ||||
---|---|---|---|---|---|---|---|---|
CH4 | O2 | N2 | CO2 | H2O | ||||
主火焰 | 7.2 | 294 | 49.6 | 0.156 | 0.197 | 0.647 | 0 | 0 |
值班火焰 | 18.2 | 1880 | 11.4 | 0 | 0.054 | 0.742 | 0.11 | 0.094 |
空气伴流 | 300×300 | 291 | 0.9 | 0 | 0.23 | 0.77 | 0 | 0 |
Firebox structure | Firing condition | Fuel composition/%(mass) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Length (x-direction)/m | Width (y-direction)/m | Height (z-direction) /m | Number of floor burners | Number of wall burners | Fuel gas ?ow rate in bottom/(kg/s) | Fuel gas ?ow rate in side/(kg/s) | CH4 | H2 | CO | C2H4 |
13.6 | 2.57 | 12.06 | 16 | 32 | 1.2439 | 0.3028 | 98.237 | 1.36 | 0.307 | 0.096 |
Table 2 Structure dimension and operating conditions of cracking furnace
Firebox structure | Firing condition | Fuel composition/%(mass) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Length (x-direction)/m | Width (y-direction)/m | Height (z-direction) /m | Number of floor burners | Number of wall burners | Fuel gas ?ow rate in bottom/(kg/s) | Fuel gas ?ow rate in side/(kg/s) | CH4 | H2 | CO | C2H4 |
13.6 | 2.57 | 12.06 | 16 | 32 | 1.2439 | 0.3028 | 98.237 | 1.36 | 0.307 | 0.096 |
α | 底部烧嘴燃料 流量/(kg/s) | 底部风门入口 流量/(kg/s) | 侧壁烧嘴总 流量/(kg/s) |
---|---|---|---|
1.05 | 0.09375 | 1.70036 | 1.44857 |
1.07 | 0.09375 | 1.73274 | 1.47472 |
1.09 | 0.09375 | 1.76513 | 1.50087 |
1.10 | 0.09375 | 1.78132 | 1.51395 |
1.13 | 0.09375 | 1.82991 | 1.55317 |
1.16 | 0.09375 | 1.87849 | 1.59240 |
1.20 | 0.09375 | 1.94326 | 1.64470 |
Table 3 Inlet conditions under different excess air coefficients
α | 底部烧嘴燃料 流量/(kg/s) | 底部风门入口 流量/(kg/s) | 侧壁烧嘴总 流量/(kg/s) |
---|---|---|---|
1.05 | 0.09375 | 1.70036 | 1.44857 |
1.07 | 0.09375 | 1.73274 | 1.47472 |
1.09 | 0.09375 | 1.76513 | 1.50087 |
1.10 | 0.09375 | 1.78132 | 1.51395 |
1.13 | 0.09375 | 1.82991 | 1.55317 |
1.16 | 0.09375 | 1.87849 | 1.59240 |
1.20 | 0.09375 | 1.94326 | 1.64470 |
α | 反应净生成热/(J/(cm3?s)) | CH4摩尔分数 | 温度/K | NO摩尔生成率/(mol/(cm3?s)) |
---|---|---|---|---|
1.05 | 36.09 | 1.59×10-5 | 2225.53 | 3.03×10-7 |
1.07 | 36.05 | 1.60×10-5 | 2218.58 | 2.89×10-7 |
1.09 | 35.93 | 1.62×10-5 | 2211.42 | 2.75×10-7 |
1.1 | 35.88 | 1.63×10-5 | 2207.03 | 2.68×10-7 |
1.13 | 35.56 | 1.63×10-5 | 2203.82 | 2.62×10-7 |
1.16 | 35.34 | 1.65×10-5 | 2197.88 | 2.51×10-7 |
1.2 | 35.02 | 1.66×10-5 | 2192.88 | 2.42×10-7 |
Table 4 Simulation results under different excess air coefficients
α | 反应净生成热/(J/(cm3?s)) | CH4摩尔分数 | 温度/K | NO摩尔生成率/(mol/(cm3?s)) |
---|---|---|---|---|
1.05 | 36.09 | 1.59×10-5 | 2225.53 | 3.03×10-7 |
1.07 | 36.05 | 1.60×10-5 | 2218.58 | 2.89×10-7 |
1.09 | 35.93 | 1.62×10-5 | 2211.42 | 2.75×10-7 |
1.1 | 35.88 | 1.63×10-5 | 2207.03 | 2.68×10-7 |
1.13 | 35.56 | 1.63×10-5 | 2203.82 | 2.62×10-7 |
1.16 | 35.34 | 1.65×10-5 | 2197.88 | 2.51×10-7 |
1.2 | 35.02 | 1.66×10-5 | 2192.88 | 2.42×10-7 |
1 | 王菁. 大型燃气乙烯裂解炉燃烧过程的模拟研究[D]. 天津: 天津大学, 2010. |
Wang J. The simulation of the combustion process for the large-scale ethylene cracking furnace [D]. Tianjin: Tianjin University, 2010. | |
2 | 李昌力, 李进锋. 乙烯裂解炉污染物及减排技术[J].石油化工设备技术, 2013, 34(1): 51-55. |
Li C L, Li J F. Pollutants and emission reduction technology of ethylene cracking furnace [J]. Petro-Chemical Equipment Technology, 2013, 34(1): 51-55. | |
3 | 王国清, 周先锋, 石莹, 等. 乙烯裂解炉辐射段技术的研究进展及工业应用[J]. 中国科学: 化学, 2014, 44(11): 1714-1722. |
Wang G Q, Zhou X F, Shi Y, et al. Research progress and industrial application of radiant section technology of ethylene cracking furnace [J]. Scientia Sinica Chimica, 2014, 44(11): 1714-1722. | |
4 | Heynderickx G J, Oprins A J M, Marin G B, et al. Three-dimensional flow patterns in cracking furnaces with long-flame burners [J]. AIChE J., 2001, 47 (2): 388-400. |
5 | 刘时涛, 王宏刚, 钱锋, 等. SL-Ⅱ型工业乙烯裂解炉内燃烧传热与裂解反应的耦合模拟[J]. 化工学报, 2011, 62(5): 1308-1317. |
Liu S T, Wang H G, Qian F, et al. Coupled simulation of combustion with heat transfer and cracking reaction in SL-Ⅱ industrial ethylene pyrolyzer [J]. CIESC Journal, 2011, 62(5): 1308-1317. | |
6 | Hu G H, Wang H G, Qian F. Numerical simulation on flow, combustion and heat transfer of ethylene cracking furnaces [J]. Chemical Engineering Science, 2011, 66: 1600-1611. |
7 | Stefanidis G D, Merci B, Heynderickx G J, et al. CFD simulations of steam cracking furnaces using detailed combustion mechanisms [J]. Computers & Chemical Engineering, 2006, 30(4): 635-649. |
8 | Lu T, Law C K. Toward accommodating realistic fuel chemistry in large-scale computations [J]. Progress in Energy and Combustion Science, 2009, 35: 192-215. |
9 | Hassan G, Pourkashanian M, Ingham D, et al. Predictions of CO and NOx emissions from steam cracking furnaces using GR12.11 detailed reaction mechanism—a CFD investigation [J]. Computers & Chemical Engineering, 2013, 58(45): 68-83. |
10 | Reyniers P A, Schietekat C M, van Cauwenberge D J, et al. Necessity and feasibility of 3D simulations of steam cracking reactors [J]. Industrial & Engineering Chemistry Research, 2015, 54: 12270-12282. |
11 | Hewson J C, Bollig M. Reduced mechanisms for NOx emissions from hydrocarbon diffusion flames [J]. Symposium (International) on Combustion, 1996, 2: 2171-2179. |
12 | Stefanidis G D, Heynderickx G J, Marin G B. Development of reduced combustion mechanisms for premixed flame modeling in steam cracking furnaces with emphasis on NO emission [J]. Energy & Fuels, 2006, 20 (1): 103-113. |
13 | Tang Q, Denison M, Adams B, et al. Towards comprehensive computational fluid dynamics modeling of pyrolysis furnaces with next generation low-NOx burners using finite-rate chemistry [J]. Proceedings of the Combustion Institute, 2009, 32: 2649- 2657. |
14 | 郑清平, 张惠明, 邓玉龙. 压燃式天然气发动机燃烧过程CFD模拟计算中的若干问题 [J]. 燃烧科学与技术, 2006, 12(4): 345-352. |
Zheng Q P, Zhang H M, Deng Y L. Some problems occurred in numerical simulation of combustion process in a compressed ignition natural gas engine [J]. Journal of Combustion Science and Technology, 2006, 12(4): 345-352. | |
15 | 倪城振, 杜文莉, 胡贵华. 乙烯裂解炉耦合模拟中湍流模型中的影响分析[J].化工学报, 2019, 70(2): 450-459. |
Ni C Z, Du W L, Hu G H. Impact of turbulence model in coupled simulation of ethylene cracking furnace [J]. CIESC Journal, 2019, 70(2): 450-459. | |
16 | Hu G H, Schietekat C M, Zhang Y, et al. Impact of radiation models in coupled simulations of steam cracking furnaces and reactors [J]. Industrial & Engineering Chemistry Research, 2015, 54(9): 2453- 2465 |
17 | Denison M K, Webb B W. Spectral line-based weighted-sum-of-gray-gases model for arbitrary RTE solvers [J]. Journal of Heat Transfer, Transactions ASME, 1993, 115(4): 1004-1012. |
18 | Magnussen B F, Hjertager B H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion [C]//16th International Combustion Symposium, The Combustion Institute, Pittsburgh, 1976: 719-729. |
19 | Magnussen B F. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow [C]//19th Aerospace Science Meeting, American Institute of Aeronautics and Astronautics, St. Louis, Missouri, USA, 1981. |
20 | Gran I R, Magnussen B F. A numerical study of a bluff-body stabilized diffusion flame(2): Influence of combustion modeling and finite-rate chemistry [J]. Combustion Science and Technology, 1996, 119(1): 191-217. |
21 | Chen Q. Comparison of different k-ε models for indoor air flow computations [J]. Numerical Heat Transfer, Part B., 1995, 28: 353-369. |
22 | 黄山. 新型燃气快速热水器燃烧过程的数值模拟和实验研究[D]. 重庆: 重庆大学, 2006. |
Huang S. Numerical simulation and experimental studies on combustion process of the novel gas instantaneous water heater [D]. Chongqing: Chongqing University, 2006. | |
23 | Barlow R, Frank J. Piloted CH4/air flames C, D, E and F - release2.1[EB/OL]. [2007-07-15]. http: //. |
24 | Fluent, ANSYS. Gambit 2.3 user’s guide [Z]. ANSYS Inc.Lebanon, NH, USA, 2006. |
25 | Fluent, ANSYS. ANSYS FLUENT user’s guide, release 14.0 [Z]. ANSYS Inc.Canonsburg, PA, USA, 2011. |
26 | Sandia/TUD piloted CH4/air jet flames [EB/OL]. [2003-01]. http: //. |
27 | 张建, 李金科. 裂解炉NOx抑制技术[J]. 乙烯工业, 2013, 25(4): 40-43. |
Zhang J, Li J K. NOx suppression technology for cracking furnace [J]. Ethylene Industry, 2013, 25(4): 40-43. | |
28 | 张昆. 大庆乙烯裂解炉热效率分析与优化[J]. 江西化工, 2015, 2(2): 17-20. |
Zhang K. The analysis and optimization of Daqing ethylene cracking furnace thermal efficiency [J]. Jiangxi Chemical Industry, 2015, 2(2): 17-20. | |
29 | 王鹏. 多燃料燃气锅炉燃烧调整与运行优化[D]. 长沙: 长沙理工大学, 2015. |
Wang P. More fuel gas boiler combustion adjustment and operation optimization [D]. Changsha: Changsha University of Science & Technology, 2015. | |
30 | Kee R J, Rupley F M, Miller J A, et al. CHEMKIN Release 4.0[Z]. Reaction Design Inc.San Diego, CA, 2004. |
31 | Habibi A, Merci B, Heynderickx G J. Impact of radiation models in CFD simulations of steam cracking furnaces[J]. Comput. Chem. Eng., 2007, 31: 1389-1406. |
32 | 申东发, 王国清, 刘俊杰, 等. 利用详细燃烧模型对裂解炉二维模型富氧燃烧过程进行数值模拟[J]. 石油化工, 2016, 45(6): 656-663. |
Shen D F, Wang G Q, Liu J J, et al. 2D numerical simulation of oxygen-enriched combustion process in cracking furnace using detailed combustion model [J].Petrochemical Technology, 2016, 45(6): 656-663. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[3] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[4] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[5] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[6] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[7] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[8] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[9] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[10] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[11] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[12] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[13] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[14] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[15] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||