CIESC Journal ›› 2020, Vol. 71 ›› Issue (2): 698-707.DOI: 10.11949/0438-1157.20190771

• Process system engineering • Previous Articles     Next Articles

Effect of combustion-supporting air on NOx emission of ethylene cracking furnace

Guihua HU1,2(),Zhencheng YE1,2,Wenli DU1,2()   

  1. 1.School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
    2.State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2019-07-05 Revised:2019-09-23 Online:2020-02-05 Published:2020-02-05
  • Contact: Wenli DU

助燃空气对乙烯裂解炉NOx排放的影响

胡贵华1,2(),叶贞成1,2,杜文莉1,2()   

  1. 1.华东理工大学信息学科与工程学院,上海 200237
    2.化学工程联合国家重点实验室(华东理工大学),上海 200237
  • 通讯作者: 杜文莉
  • 作者简介:胡贵华(1974—),男,博士,副研究员,huguihua@ecust.edu.cn
  • 基金资助:
    国家杰出青年科学基金项目(61725301);中央高校基本科研业务费专项资金(222201917006);上海市自然科学基金项目(17ZR1406800);国家自然科学基金重点项目(61533003)

Abstract:

Coupled simulation and optimization of complex physical and chemical processes in ethylene cracking furnace can meet the demand for design and operation of high efficiency, low pollution and low cost in ethylene plant. Therefore, it has great significance for improving the competitiveness of the ethylene industry. Aiming at the disadvantage of simple combustion mechanism that it is difficult to accurately predict the distribution of NOx concentration produced by furnace combustion, are reduced GRI-Mesh 3.0 mechanism combined with eddy dissipation concept (EDC) model for cracking furnace was proposed. The combustion process of Sandia Flame D was simulated and the reliability of the coupled model was verified. Based on the established combustion model, the effect of combustion-supporting air on reducing NO emission of cracking furnace was studied. The results show that the best effect of reducing NO is when the air preheating temperature is 300—600 K and the excess air coefficient is 1.1 when the thermal efficiency of the cracking furnace is satisfied.

Key words: ethylene cracking furnace, simulation, optimization, reduced GRI-Mesh 3.0 mechanism, computational fluid dynamics, combustion-supporting air, NOx emission

摘要:

乙烯裂解炉内复杂物理化学过程耦合模拟与优化能够满足乙烯装置对高效率、低污染和低成本的设计和操作要求,对提高乙烯工业的竞争力具有重要意义。针对简单燃烧机理难以准确预测炉膛燃烧生成NOx浓度分布的弊端,提出了在裂解炉使用更准确的简化GRI-Mesh 3.0机理结合涡耗散概念(EDC)模型的方法,并对Sandia Flame D的燃烧过程进行计算流体力学(CFD)模拟,验证了此耦合模型的可靠性。在已建立的燃烧模型的基础上,研究了助燃空气对降低裂解炉NO排放的影响,结果表明:在满足裂解炉热效率的情况下,空气预热温度为300~600 K、过量空气系数为1.1时降低NO的效果最佳。

关键词: 乙烯裂解炉, 模拟, 优化, 简化GRI- Mesh 3.0机理, 计算流体力学, 助燃空气, NOx排放

CLC Number: