1 |
郭双生, 董文平, 杨成佳. 空间受控生态生保技术发展现状与展望[J]. 航天医学与医学工程, 2013, 26: 259-264.
|
|
Guo S S, Dong W P, Yang C J. Current status and prospect in controlled ecological life support technique development[J]. Space Medicine & Medical Engineering, 2013, 26: 259-264.
|
2 |
Nelson M, Dempster W F, Allen J P. Key ecological challenges for closed systems facilities[J]. Advances in Space Research, 2013, 52: 86-96.
|
3 |
刘红, 胡恩柱, 胡大伟, 等. 生物再生生命保障系统设计的基本问题[J]. 航天医学与医学工程, 2008, 21: 372-376.
|
|
Liu H, Hu E Z, Hu D W, et al. Fundamental issues of bioregenerative life support system design[J]. Space Medicine & Medical Engineering, 2008, 21: 372-376.
|
4 |
Ishii S K L, Boyer T H. Life cycle comparison of centralized wastewater treatment and urine source separation with struvite precipitation: focus on urine nutrient management[J]. Water Research, 2015, 79: 88-103.
|
5 |
Kudenko Y A, Gribovskaya I V, Zolotukhin I G. Physical-chemical treatment of wastes: a way to close turnover of elements in LSS[J]. Acta Astronautica, 2000, 46: 585-589.
|
6 |
Deng S, Xie B, Liu H. The recycle of water and nitrogen from urine in bioregenerative life support system[J]. Acta Astronautica, 2016, 123: 86-90.
|
7 |
Nicolau E, González-González I, Flynn M, et al. Bioelectrochemical degradation of urea at platinized boron doped diamond electrodes for bioregenerative systems[J]. Advances in Space Research, 2009, 44: 965-970.
|
8 |
Tian X, Gao Z, Feng H, et al. Efficient nutrient recovery/removal from real source-separated urine by coupling vacuum thermal stripping with activated sludge processes[J]. Journal of Cleaner Production, 2019, 220: 965-973.
|
9 |
Volpin F, Heo H, Hasan Johir M A, et al. Techno-economic feasibility of recovering phosphorus, nitrogen and water from dilute human urine via forward osmosis[J]. Water Research, 2019, 150: 47-55.
|
10 |
Yao S, Chen L, Guan D, et al. On-site nutrient recovery and removal from source-separated urine by phosphorus precipitation and short-cut nitrification-denitrification[J]. Chemosphere, 2017, 175: 210-218.
|
17 |
高锋, 杨朝晖, 曾光明, 等. 厌氧水解-SBR工艺处理高浓度有机废水运行工序的优化[J]. 环境科学, 2004, 25: 84-88.
|
|
Gao F, Yang C H, Zeng G M, et al. Optimization of piggery wastewater treatment with combined anaerobic hydrolysis and SBR process[J]. Environment Science, 2004, 25: 84-88.
|
18 |
张良长, 艾为党, 李婷, 等. 好氧微生物处理模拟尿液废水驯化实验研究[J]. 航天医学与医学工程, 2017, 30: 61-65.
|
|
Zhang L C, Ai W D, Li T, et al. Acclimation study of aerobic process for ersatz urine wastewater microbial treatment[J]. Space Medicine & Medical Engineering, 2017, 30: 61-65.
|
19 |
Zhou Y, Oehmen A, Lim M, et al. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants[J]. Water Research, 2011, 45: 4672-4682.
|
20 |
Suzuki I, Dular U, Kwok S C. Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts[J]. Journal of Bacteriology, 1974, 120: 556-558.
|
11 |
Nelson M, Finn M, Wilson C, et al. Bioregenerative recycling of wastewater in Biosphere 2 using a constructed wetland: 2-year results[J]. Ecological Engineering, 1999, 13: 189-197.
|
12 |
Fu Y, Li L, Xie B, et al. How to establish a bioregenerative life support system for long-term crewed missions to the Moon or Mars[J]. Astrobiology, 2016, 16: 925.
|
13 |
Xie B, Zhu G, Liu B, et al. The water treatment and recycling in 105-day bioregenerative life support experiment in the Lunar Palace 1[J]. Acta Astronautica, 2017, 140: 420-426.
|
14 |
张良长, 李婷, 余青霓, 等. 4人180天集成试验环控生保系统设计及运行概况[J]. 航天医学与医学工程, 2018, 31: 199-207.
|
|
Zhang L C, Li T, Yu Q N, et al. Design and operation overview of 4-person 180-day integrated experiment in controlled ecological life support system[J]. Space Medicine & Medical Engineering, 2018, 31: 199-207.
|
15 |
Li T, Zhang L, Ai W, et al. A modified MBR system with post advanced purification for domestic water supply system in 180-day CELSS: construction, pollutant removal and water allocation[J]. Journal of Environmental Management, 2018, 222: 37-43.
|
16 |
Verostko C E, Carrier C, Finger B W. Ersatz wastewater formulations for testing water recovery systems[J]. SAE Technical Papers, 2004, 113: 1008-1024.
|
21 |
卢刚, 郑平, 夏凤毅. 含氨废水短程硝化工艺的探讨[J]. 浙江大学学报(农业与生命科学版), 2004, 30: 241-246.
|
|
Lu G, Zheng P, Xia F Y. Partial nitrif ication of ammonia-containing wastewater[J].Journal of Zhejiang University(Agriculture and Life Sciences), 2004, 30: 241-246.
|
22 |
陈卫民, 戴树桂, 张清敏. 水环境中亚硝酸盐聚集的原因及其对动植物的影响[J]. 安全与环境学报, 2011, 11: 9-15.
|
|
Chen W M, Dai S G, Zhang Q M.Causes of the increased nitrite concentration in aquatic environments and their effects on the plant and animal survival[J]. Journal of Safety and Enviroment, 2011, 11: 9-15.
|
23 |
Liu Y, Ngo H H, Guo W, et al. The roles of free ammonia (FA) in biological wastewater treatment processes: a review[J]. Environment International, 2019, 123: 10-19.
|
24 |
Anthonisen A C, Loehr R C, Prakasam T B, et al. Inhibition of nitrification by ammonia and nitrous acid[J]. Water Pollution Control Federation, 1976, 48: 835-852.
|
25 |
Mccarty P L. What is the best biological process for nitrogen removal - when and why?[J]. Environmental Science & Technology, 2018, 52: 3835-3841.
|
26 |
Burns D. Environmental technologies to treat nitrogen pollution[J]. Water Intelligence Online, 2009, 8: 41-65.
|
27 |
Ge S, Wang S, Yang X, et al. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: a review[J]. Chemosphere, 2015, 140: 85-98.
|