CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 85-96.DOI: 10.11949/0438-1157.20210901
• Reviews and monographs • Previous Articles Next Articles
Yiwei ZHOU(),Zhuo CHEN,Jianhong XU()
Received:
2021-07-01
Revised:
2021-10-19
Online:
2022-01-18
Published:
2022-01-05
Contact:
Jianhong XU
通讯作者:
徐建鸿
作者简介:
周弋惟(1997—),女,博士研究生,基金资助:
CLC Number:
Yiwei ZHOU, Zhuo CHEN, Jianhong XU. Progress and prospect of recycling spent lithium battery cathode materials by hydrometallurgy[J]. CIESC Journal, 2022, 73(1): 85-96.
周弋惟, 陈卓, 徐建鸿. 湿法冶金回收废旧锂电池正极材料的研究进展[J]. 化工学报, 2022, 73(1): 85-96.
Add to citation manager EndNote|Ris|BibTeX
1 | IEA. Global EV Outlook 2021[EB/OL]. [2021-08-08]. . |
2 | Aman C. Apple Shipped Record iPhones, Global Smartphone Market Recovery Continues[EB/OL]. [2021-08-08]. . |
3 | 2020年全球锂离子电池产业发展现状及区域竞争格局分析[EB/OL]. [2021-06-30]. . |
Development status and regional competition pattern analysis of global lithium ion battery industry in 2020 [EB/OL]. [2021-06-30]. . | |
4 | 2021年全球动力锂电池行业市场供需现状及发展趋势分析 “电池荒”最早将2025年出现[EB/OL]. [2021-08-08]. . |
Analysis of market supply and demand status and development trend of global lithium battery industry in 2021 “battery shortage” will appear in 2025 at the earliest[EB/OL]. [2021-08-08]. . | |
5 | Placke T, Kloepsch R, Dühnen S, et al. Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density[J]. Journal of Solid State Electrochemistry, 2017, 21(7): 1939-1964. |
6 | 2019年中国锂电池正极材料行业市场现状分析 下游产业链驱动行业高速发展[EB/OL]. [2021-06-30]. . |
Analysis of the market status quo of China's lithium battery cathode material industry in 2019 downstream industry chain drives the rapid development of the industry[EB/OL]. [2021-06-30]. . | |
7 | Yao L, Yao H S, Xi G X, et al. Recycling and synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries using D, L-malic acid[J]. RSC Advances, 2016, 6(22): 17947-17954. |
8 | 2020年中国锂电池正极材料行业调研分析报告[EB/OL]. [2021-08-08]. . |
Research and analysis report of China lithium battery cathode material industry in 2020[EB/OL]. [2021-08-08]. . | |
9 | 2021年中国锂电池正极材料行业调研分析报告[EB/OL]. [2021-08-08]. . |
Research and analysis report of China lithium battery cathode material industry in 2021[EB/OL]. [2021-08-08]. . | |
10 | Harper G, Sommerville R, Kendrick E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75-86. |
11 | Ahmadi L, Young S B, Fowler M, et al. A cascaded life cycle: reuse of electric vehicle lithium-ion battery packs in energy storage systems[J]. The International Journal of Life Cycle Assessment, 2017, 22(1): 111-124. |
12 | Chen M Y, Ma X T, Chen B, et al. Recycling end-of-life electric vehicle lithium-ion batteries[J]. Joule, 2019, 3(11): 2622-2646. |
13 | Richa K, Babbitt C W, Gaustad G. Eco-efficiency analysis of a lithium-ion battery waste hierarchy inspired by circular economy[J]. Journal of Industrial Ecology, 2017, 21(3): 715-730. |
14 | Sayilgan E, Kukrer T, Civelekoglu G, et al. A review of technologies for the recovery of metals from spent alkaline and zinc-carbon batteries[J]. Hydrometallurgy, 2009, 97(3/4): 158-166. |
15 | Natarajan S, Aravindan V. Burgeoning prospects of spent lithium-ion batteries in multifarious applications[J]. Advanced Energy Materials, 2018, 8(33): 1802303. |
16 | Lv W, Wang Z H, Cao H B, et al. A critical review and analysis on the recycling of spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1504-1521. |
17 | Pinegar H, Smith Y R. Recycling of end-of-life lithium ion batteries, part I: Commercial processes[J]. Journal of Sustainable Metallurgy, 2019, 5(3): 402-416. |
18 | Sonoc A, Jeswiet J, Soo V K. Opportunities to improve recycling of automotive lithium ion batteries[J]. Procedia CIRP, 2015, 29: 752-757. |
19 | Li L, Bian Y F, Zhang X X, et al. Economical recycling process for spent lithium-ion batteries and macro- and micro-scale mechanistic study[J]. Journal of Power Sources, 2018, 377: 70-79. |
20 | Sabisch J E C, Anapolsky A, Liu G, et al. Evaluation of using pre-lithiated graphite from recycled Li-ion batteries for new LiB anodes[J]. Resources, Conservation and Recycling, 2018, 129: 129-134. |
21 | Li X L, Zhang J, Song D W, et al. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries[J]. Journal of Power Sources, 2017, 345: 78-84. |
22 | Zhan R T, Payne T, Leftwich T, et al. De-agglomeration of cathode composites for direct recycling of Li-ion batteries[J]. Waste Management, 2020, 105: 39-48. |
23 | Georgi-Maschler T, Friedrich B, Weyhe R, et al. Development of a recycling process for Li-ion batteries[J]. Journal of Power Sources, 2012, 207: 173-182. |
24 | 刘春丽, 曹利娜. 一种从废旧锂离子动力电池中回收有价金属的方法: 107196004A[P]. 2017-09-22. |
Liu C L, Cao L N. Method for recycling valuable metal from waste lithium-ion power battery: 107196004A[P]. 2017-09-22. | |
25 | 李敦钫, 王成彦, 邱定蕃, 等. 一种直接焙烧处理废旧锂离子电池及回收有价金属的方法: 101519726A[P]. 2011-01-05. |
Li D F, Wang C Y, Qiu D F, et al. Method for directly roasting and processing spent lithium ion batteries and recycling valuable metals: 101519726A[P]. 2011-01-05. | |
26 | 赵林, 龙泽彬, 赵澎, 等. 废旧锰酸锂电池中有价金属回收方法: 108123185A[P]. 2018-06-05. |
Zhao L, Long Z B, Zhao P, et al. Recovery method of valuable metal in waste lithium manganate battery: 108123185A [P]. 2018-06-05. | |
27 | 王成彦, 张家靓, 胡军涛, 等. 一种从废旧锂离子电池中综合回收有价金属的方法: 107017443A[P]. 2017-08-04. |
Wang C Y, Zhang J L, Hu J T, et al. Method for comprehensively recycling valuable metals from spent lithium ion battery: 107017443A[P]. 2017-08-04. | |
28 | 张家靓, 胡军涛, 等. 一种从废旧锂离子电池中综合回收有价金属的方法: 106129511A[P]. 2016-11-16. |
Zhang J L, Hu J T, et al. Method for comprehensively recycling valuable metals from spent lithium ion battery: 106129511A[P]. 2016-11-16. | |
29 | 谢智平, 潘剑明, 马银标, 等. 一种从废旧锂离子电池中综合回收有价金属的方法: 110029225A[P]. 2019-07-19. |
Xie Z P, Pan J M, Ma Y B, et al. Method for comprehensively recycling valuable metals from spent lithium ion battery: 110029225A[P]. 2019-07-19. | |
30 | 王德钊, 刘春丽, 刘浩, 等. 一种锂离子电池正极材料的综合回收方法: 107267759B[P]. 2017-10-20. |
Wang D Z, Liu C L, Liu H, et al. Comprehensive recycling method of lithium ion battery anode material: 107267759B[P]. 2017-10-20. | |
31 | 蒋训雄, 张贤, 赵峰, 等. 从废旧锂离子电池中分步提取锂和镍钴的方法: 110938743A[P]. 2020-03-31. |
Jiang X X, Zhang X, Zhao F, et al. Method for extracting lithium and nickel cobalt from waste lithium ion battery step by step: 110938743A[P]. 2020-03-31. | |
32 | 熊仁利, 王平, 黄春莲, 等. 镍钴锰三元正极材料回收利用的方法: 103199320A[P]. 2015-05-27. |
Xiong R L, Wang P, Huang C L, et al. Method for recycling nickel-cobalt-manganese ternary anode material: 103199320A[P]. 2015-05-27. | |
33 | Zhang X X, Li L, Fan E S, et al. Toward sustainable and systematic recycling of spent rechargeable batteries[J]. Chemical Society Reviews, 2018, 47(19): 7239-7302. |
34 | Pinegar H, Smith Y R. Recycling of end-of-life lithium-ion batteries, part Ⅱ: Laboratory-scale research developments in mechanical, thermal, and leaching treatments[J]. Journal of Sustainable Metallurgy, 2020, 6(1): 142-160. |
35 | Gao W, Zhang X, Zheng X, et al. Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: a closed-loop process[J]. Environmental Science & Technology, 2017, 51(3): 1662-1669. |
36 | Niu Z R, Zou Y K, Xin B P, et al. Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration[J]. Chemosphere, 2014, 109: 92-98. |
37 | Dorella G, Mansur M B. A study of the separation of cobalt from spent Li-ion battery residues[J]. Journal of Power Sources, 2007, 170(1): 210-215. |
38 | Jha M K, Kumari A, Jha A K, et al. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone[J]. Waste Management, 2013, 33(9): 1890-1897. |
39 | Meshram P, Pandey B D, Mankhand T R. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: leaching and kinetic aspects[J]. Waste Management, 2015, 45: 306-313. |
40 | Meshram P, Pandey B D, Mankhand T R. Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching[J]. Chemical Engineering Journal, 2015, 281: 418-427. |
41 | Zheng R J, Zhao L, Wang W H, et al. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method[J]. RSC Advances, 2016, 6(49): 43613-43625. |
42 | Joulié M, Laucournet R, Billy E. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries[J]. Journal of Power Sources, 2014, 247: 551-555. |
43 | Li L, Chen R J, Sun F, et al. Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process[J]. Hydrometallurgy, 2011, 108(3/4): 220-225. |
44 | Li L, Ge J, Chen R J, et al. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries[J]. Waste Management, 2010, 30(12): 2615-2621. |
45 | Li L, Qu W J, Zhang X X, et al. Succinic acid-based leaching system: a sustainable process for recovery of valuable metals from spent Li-ion batteries[J]. Journal of Power Sources, 2015, 282: 544-551. |
46 | Zhang X H, Cao H B, Xie Y B, et al. A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: process optimization and kinetics analysis[J]. Separation and Purification Technology, 2015, 150: 186-195. |
47 | He L P, Sun S Y, Mu Y Y, et al. Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using l-tartaric acid as a leachant[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 714–721. |
48 | Chen D D, Rao S, Wang D X, et al. Synergistic leaching of valuable metals from spent Li-ion batteries using sulfuric acid- l-ascorbic acid system[J]. Chemical Engineering Journal, 2020, 388: 124321. |
49 | Pagnanelli F, Moscardini E, Granata G, et al. Acid reducing leaching of cathodic powder from spent lithium ion batteries: Glucose oxidative pathways and particle area evolution[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3201-3207. |
50 | Perez J P H, Folens K, Leus K, et al. Progress in hydrometallurgical technologies to recover critical raw materials and precious metals from low-concentrated streams[J]. Resources, Conservation and Recycling, 2019, 142: 177-188. |
51 | Joo S H, Shin D, Oh C, et al. Extraction of manganese by alkyl monocarboxylic acid in a mixed extractant from a leaching solution of spent lithium-ion battery ternary cathodic material[J]. Journal of Power Sources, 2016, 305: 175-181. |
52 | Chen X P, Xu B, Zhou T, et al. Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries[J]. Separation and Purification Technology, 2015, 144: 197-205. |
53 | Liu T C, Chen J, Shen X, et al. Regulating and regenerating the valuable metals from the cathode materials in lithium-ion batteries by nickel-cobalt-manganese co-extraction[J]. Separation and Purification Technology, 2021, 259: 118088. |
54 | Wang F C, He F H, Zhao J M, et al. Extraction and separation of cobalt(Ⅱ), copper(Ⅱ) and manganese(Ⅱ) by Cyanex272, PC-88A and their mixtures[J]. Separation and Purification Technology, 2012, 93: 8-14. |
55 | Larouche F, Tedjar F, Amouzegar K, et al. Progress and status of hydrometallurgical and direct recycling of Li-ion batteries and beyond[J]. Materials, 2020, 13(3): 801. |
56 | Billard I, Ouadi A, Gaillard C. Liquid-liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding[J]. Analytical and Bioanalytical Chemistry, 2011, 400(6): 1555-1566. |
57 | Xu L, Chen C, Fu M L. Separation of cobalt and lithium from spent lithium-ion battery leach liquors by ionic liquid extraction using Cyphos IL-101[J]. Hydrometallurgy, 2020, 197: 105439. |
58 | Zhu Z W, Yoko P, Cheng C Y. Recovery of cobalt and manganese from nickel laterite leach solutions containing chloride by solvent extraction using Cyphos IL 101[J]. Hydrometallurgy, 2017, 169: 213-218. |
59 | Pagnanelli F, Moscardini E, Altimari P, et al. Cobalt products from real waste fractions of end of life lithium ion batteries[J]. Waste Management, 2016, 51: 214-221. |
60 | Zhang P W, Yokoyama T, Itabashi O, et al. Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries[J]. Hydrometallurgy, 1998, 47(2/3): 259-271. |
61 | Virolainen S, Fallah Fini M, Laitinen A, et al. Solvent extraction fractionation of Li-ion battery leachate containing Li, Ni, and Co[J]. Separation and Purification Technology, 2017, 179: 274-282. |
62 | Nan J M, Han D M, Yang M J, et al. Recovery of metal values from a mixture of spent lithium-ion batteries and nickel-metal hydride batteries[J]. Hydrometallurgy, 2006, 84(1/2): 75-80. |
63 | Granata G, Pagnanelli F, Moscardini E, et al. Simultaneous recycling of nickel metal hydride, lithium ion and primary lithium batteries: accomplishment of European Guidelines by optimizing mechanical pre-treatment and solvent extraction operations[J]. Journal of Power Sources, 2012, 212: 205-211. |
64 | Zhang P W, Yokoyama T, Itabashi O, et al. Hydrometallurgical process for recovery of metal values from spent nickel-metal hydride secondary batteries[J]. Hydrometallurgy, 1998, 50(1): 61-75. |
65 | Han K N, Kellar J J, Cross W M, et al. Opportunities and challenges for treating rare-earth elements[J]. Geosystem Engineering, 2014, 17(3): 178-194. |
66 | Swain B, Mishra C, Jeong J, et al. Separation of Co(Ⅱ) and Li(I) with Cyanex 272 using hollow fiber supported liquid membrane: a comparison with flat sheet supported liquid membrane and dispersive solvent extraction process[J]. Chemical Engineering Journal, 2015, 271: 61-70. |
67 | Darekar M, Sen N, Singh K K, et al. Liquid-liquid extraction in microchannels with Zinc-D2EHPA system[J]. Hydrometallurgy, 2014, 144/145: 54-62. |
68 | Marsousi S, Karimi-Sabet J, Moosavian M A, et al. Liquid-liquid extraction of calcium using ionic liquids in spiral microfluidics[J]. Chemical Engineering Journal, 2019, 356: 492-505. |
69 | Chen Z, Wang W T, Sang F N, et al. Fast extraction and enrichment of rare earth elements from waste water via microfluidic-based hollow droplet[J]. Separation and Purification Technology, 2017, 174: 352-361. |
70 | Hirayama Y, Hinoue M, Tokumoto H, et al. Liquid-liquid extraction and separation of cobalt and lithium ions using a slug flow microreactor[J]. Journal of Chemical Engineering of Japan, 2018, 51(3): 222-228. |
71 | Muto A, Hirayama Y, Tokumoto H, et al. Liquid-liquid extraction of lithium ions using a slug flow microreactor: effect of extraction reagent and microtube material[J]. Solvent Extraction and Ion Exchange, 2017, 35(1): 61-73. |
72 | Ceron M A, Guzman-Lucero D J, Palomeque J F, et al. Parallel microwave-assisted synthesis of ionic liquids and screening for denitrogenation of straight-Run diesel feed by liquid-liquid extraction[J]. Combinatorial Chemistry & High Throughput Screening, 2012, 15(5): 427-432. |
73 | Cui T, Zhu X P, Wu L, et al. Ultrasonic assisted dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry for determination of trace gallium in vanadium titanium magnetite[J]. Microchemical Journal, 2020, 157: 104993. |
74 | Poulsen C E, Wootton R C R, Wolff A, et al. A microfluidic platform for the rapid determination of distribution coefficients by gravity-assisted droplet-based liquid-liquid extraction[J]. Analytical Chemistry, 2015, 87(12): 6265-6270. |
75 | Kuipa P K, Hughes M A. Influence of high voltage electric fields applied across a horizontal liquid-liquid interface on the rate of metal extraction using a rotating diffusion cell[J]. Separation Science and Technology, 1999, 34(13): 2643-2661. |
76 | Saien J, Bamdadi H, Daliri S. Liquid-liquid extraction intensification with magnetite nanofluid single drops under oscillating magnetic field[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 1152-1159. |
77 | 马空军, 贾殿赠, 孙文磊, 等. 物理场强化化工过程的研究进展[J]. 现代化工, 2009, 29(3): 27-31, 33. |
Ma K J, Jia D Z, Sun W L, et al. Advances in physical fields used to enhance processes of chemical engineering[J]. Modern Chemical Industry, 2009, 29(3): 27-31, 33. | |
78 | O'Brien M, Koos P, Browne D L, et al. A prototype continuous-flow liquid-liquid extraction system using open-source technology[J]. Organic & Biomolecular Chemistry, 2012, 10(35): 7031-7036. |
79 | Yang Y, Huang G Y, Xie M, et al. Synthesis and performance of spherical LiNixCoyMn1-x-yO2 regenerated from nickel and cobalt scraps[J]. Hydrometallurgy, 2016, 165: 358-369. |
80 | Sa Q N, Gratz E, He M N, et al. Synthesis of high performance LiNi1/3Mn1/3Co1/3O2 from lithium ion battery recovery stream[J]. Journal of Power Sources, 2015, 282: 140-145. |
81 | Yao L, Feng Y, Xi G X. A new method for the synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries[J]. RSC Advances, 2015, 5(55): 44107-44114. |
82 | Sa Q N, Gratz E, Heelan J A, et al. Synthesis of diverse LiNixMnyCozO2 cathode materials from lithium ion battery recovery stream[J]. Journal of Sustainable Metallurgy, 2016, 2(3): 248-256. |
83 | Weng Y Q, Xu S M, Huang G Y, et al. Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)1-xMgx]O2 prepared from spent lithium ion batteries[J]. Journal of Hazardous Materials, 2013, 246/247: 163-172. |
84 | Zou H Y, Gratz E, Apelian D, et al. A novel method to recycle mixed cathode materials for lithium ion batteries[J]. Green Chemistry, 2013, 15(5): 1183. |
85 | Li L, Zhang X X, Chen R J, et al. Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries[J]. Journal of Power Sources, 2014, 249: 28-34. |
86 | Lee C K, Rhee K I. Preparation of LiCoO2 from spent lithium-ion batteries[J]. Journal of Power Sources, 2002, 109(1): 17-21. |
87 | Yao L, Xi Y B, Xi G X, et al. Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol-gel-hydrothermal route using spent Li-ion battery[J]. Journal of Alloys and Compounds, 2016, 680: 73-79. |
88 | Flexer V, Baspineiro C F, Galli C I. Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing[J]. Science of the Total Environment, 2018, 639: 1188-1204. |
89 | Yang Y, Xu S M, He Y H. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes[J]. Waste Management, 2017, 64: 219-227. |
90 | 赵春龙, 孙峙, 郑晓洪, 等. 碳酸锂的制备及其纯化过程的研究进展[J]. 过程工程学报, 2018, 18(1): 20-28. |
Zhao C L, Sun S, Zheng X H, et al. Research progress of lithium carbonate preparation and purification process[J]. The Chinese Journal of Process Engineering, 2018, 18(1): 20-28. | |
91 | Han B, Porvali A, Lundström M, et al. Lithium recovery by precipitation from impure solutions - lithium ion battery waste[J]. Chemical Engineering & Technology, 2018, 41(6): 1205-1210. |
92 | Lu Y C, Liu Y, Zhou C, et al. Preparation of Li2CO3 nanoparticles by carbonation reaction using a microfiltration membrane dispersion microreactor[J]. Industrial & Engineering Chemistry Research, 2014, 53(27): 11015-11020. |
93 | Liang H L, Yuan S, Shi L Y, et al. Highly-ordered microstructure and well performance of LiNi0.6Mn0.2Co0.2O2 cathode material via the continuous microfluidic synthesis[J]. Chemical Engineering Journal, 2020, 394: 124846. |
[1] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[2] | Zhongliang XIAO, Bilu YIN, Liubin SONG, Yinjie KUANG, Tingting ZHAO, Cheng LIU, Rongyao YUAN. Research progress of waste lithium-ion battery recycling process and its safety risk analysis [J]. CIESC Journal, 2023, 74(4): 1446-1456. |
[3] | Shuangqiao YANG, Baojie WEI, Dawei XU, Li LI, Qi WANG. Application of aluminum-plastic packaging and new recycling technology of the waste [J]. CIESC Journal, 2022, 73(8): 3326-3337. |
[4] | Pengpeng WANG, Yanggang JIA, Xia SHAO, Jie CHENG, Aiqin MAO, Jie TAN, Daolai FANG. Preparation and lithium storage performance of K+-doped spinel (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 high-entropy oxide anode materials [J]. CIESC Journal, 2022, 73(12): 5625-5637. |
[5] | XIE Zhaoming, CHEN Geng, LIU Renlong, LIU Zuohua, CEN Shaodou, TAO Changyuan, GUO Shenghui. Reaction kinetics characteristics of pyrolusite leaching process enhanced by rigid-flexible combined impeller [J]. CIESC Journal, 2021, 72(5): 2586-2595. |
[6] | Ji LI,Yufeng PENG,Jiahua ZHU. Principles and application of enclosed exhausts cycling for process industry (Ⅰ): Wet process phosphoric acid [J]. CIESC Journal, 2021, 72(10): 5257-5264. |
[7] | RAO Fu, MA En, ZHENG Xiaohong, ZHANG Xihua, LYU Weiguang, YAO Peifan, SUN Zhi. Research advances on nickel extraction technology from nickel sulfide ore [J]. CIESC Journal, 2021, 72(1): 495-507. |
[8] | You WANG, Xingyan WANG, Liangchang ZHANG, Weidang AI, Shuangsheng GUO. Treatment of high-strength domestic wastewater by two-stage MBfR processes [J]. CIESC Journal, 2020, 71(5): 2363-2372. |
[9] | Jie WANG, Yuan LI, Hailei ZHAO. Synthesis and lithium storage performance of three-dimensional Co3O4 micro-flowers assembled with nanoparticles [J]. CIESC Journal, 2020, 71(4): 1844-1850. |
[10] | Xiao e DANG, Minchao HUAI. Influence of CuSO4 on SCN- precipitation effect and coexisting ions concentration in cyanide waste water [J]. CIESC Journal, 2020, 71(3): 1310-1316. |
[11] | Liubin SONG, Anxian LI, Zhongliang XIAO, Zhenzhen CHI, Zhong CAO. Application research status of first-principles in lithium-ion battery electrode materials [J]. CIESC Journal, 2019, 70(6): 2051-2059. |
[12] | WANG Jian, GUO Hang, YE Fang, MA Chongfang. Numerical simulation of effect of phase change material on temperature distribution in power battery pack of vehicle [J]. CIESC Journal, 2018, 69(4): 1611-1619. |
[13] | GAO Xiang, GUO Yuan, WEI Difeng, LUO Yingwu, SU Rongxin. Recent progress on binders for silicon-based anodes in lithium-ion batteries [J]. CIESC Journal, 2018, 69(11): 4605-4613. |
[14] | HE Lipo, SUN Shuying, YU Jianguo. Review on processes and technologies for recovery of valuable metals from spent lithium-ion batteries [J]. CIESC Journal, 2018, 69(1): 327-340. |
[15] | NIU Dapeng, LIU Yuanqing. Modeling hydrometallurgical leaching process based on improved just-in-time learning algorithm [J]. CIESC Journal, 2017, 68(7): 2873-2879. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||