1 |
Wang F L, He Y L, Tong Z X, et al. Real-time fouling characteristics of a typical heat exchanger used in the waste heat recovery systems[J]. International Journal of Heat and Mass Transfer, 2017, 104: 774-786.
|
2 |
Zhuang D W, Ding G L, Hu H T, et al. Condensing droplet behaviors on fin surface under dehumidifying condition (Ⅰ): Numerical model[J]. Applied Thermal Engineering, 2015, 105: 336-344.
|
3 |
Kaiser S, Antonijevic D, Tsotsas E. Formation of fouling layers on a heat exchanger element exposed to warm, humid and solid loaded air streams[J]. Experimental Thermal and Fluid Science, 2002, 26(2): 291-297.
|
4 |
Ahn Y C, Lee J K. Characteristics of air-side particulate fouling materials in finned-tube heat exchangers of air conditioners[J]. Particulate Science and Technology, 2005, 23(3): 297-307.
|
5 |
Zhang G, Bott T R, Bemrose C R. Reducing particle deposition in air-cooled heat exchangers[J]. Heat Transfer Engineering, 1992, 13(2): 81-87.
|
6 |
Zhan F L, Tang J J, Ding G L, et al. Experimental investigation on particle deposition characteristics of wavy fin-and-tube heat exchangers[J]. Applied Thermal Engineering, 2016, 99: 1039-1047.
|
7 |
Abd-Elhady M S, Rindt C C M, Steenhoven A A. Optimization of flow direction to minimize particulate fouling of heat exchangers[J]. Heat Transfer Engineering, 2009, 30(10): 895-902.
|
8 |
Bell I H, Groll E A, König H. Experimental analysis of the effects of particulate fouling on heat exchanger heat transfer and air-side pressure drop for a hybrid dry cooler[J]. Heat Transfer Engineering, 2011, 32(3): 264-271.
|
9 |
Chao S, Jiang Y Q, Yang Y, et al. Experimental performance evaluation of a novel dry-expansion evaporator with defouling function in a wastewater source heat pump[J]. Applied Energy, 2012, 95(2): 202-209.
|
10 |
Leppänen A, Tran H, Taipale R, et al. Numerical modeling of fine particle and deposit formation in a recovery boiler[J]. Fuel, 2014, 129(7): 45-53.
|
11 |
Zheng S, Zeng X W, Qi C B, et al. Mathematical modeling and experimental validation of ash deposition in a pulverized-coal boiler[J]. Applied Thermal Engineering, 2017, 110: 720-729.
|
12 |
Tang S Z, Li M J, Wang F L, et al. Fouling and thermal-hydraulic characteristics of aligned elliptical tube and honeycomb circular tube in flue gas heat exchangers[J]. Fuel, 2019, 251: 316-327.
|
13 |
Paz C, Suárez E, Eirís A, et al. Development of a predictive CFD fouling model for diesel engine exhaust gas systems[J]. Heat Transfer Engineering, 2013, 34(8): 674-682.
|
14 |
Yang X, Ingham D, Ma L, et al. Understanding the ash deposition formation in Zhundong lignite combustion through dynamic CFD modelling analysis[J]. Fuel, 2017, 194: 553-543.
|
15 |
Edelin D, Bariteau N, Etourneau Y, et al. Experimental investigation of the air side fouling of finned tube heat exchangers[J]. Heat Mass Transfer, 2019, 55(10): 2713-2722.
|
16 |
Abd-Elhady M S, Rindt C C M, Wijers J G, et al. Modelling the impaction of a micron particle with a powdery layer[J]. Powder Technology, 2006, 168(3): 111-124.
|
17 |
Jin X M, Yang L J, Du X Z, et al. Numerical investigation of particle transport characteristics in an isolated room with single-sided natural ventilation[J]. Building Simulation, 2016, 9(1): 43-52.
|
18 |
Tong Z X, Li M J, He Y L, et al. Simulation of real time particle deposition and removal processes on tubes by coupled numerical method[J]. Applied Energy, 2017, 185(2): 2181-2193.
|
19 |
杨艺菲, 庄大伟, 胡海涛, 等. 湿工况下平翅片平面凝水形成及运动过程的数值模拟与实验验证[J]. 化工学报, 2014, 65: 140-147.
|
|
Yang Y F, Zhuang D W, Hu H T, et al. Numerical simulation and experimental validation of water condensing and moving on plain-fin surface under dehumidifying conditions[J]. CIESC Journal, 2014, 65: 140-147.
|
20 |
Zhan F L, Zhuang D W, Ding G L, et al. Influence of wet particle deposition on air-side heat transfer and pressure drop of fin-and-tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2018, 124: 1230-1244.
|
21 |
Hu H H, Patankar N A, Zhu M Y. Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique[J]. Journal of Computational Physics, 2001, 169(2): 427-462.
|
22 |
Mitra S, Nguyen T B T, Doroodchi E, et al. On wetting characteristics of droplet on a spherical particle in film boiling regime[J]. Chemical Engineering Science, 2016, 149: 181-203.
|
23 |
Wachem B G M V, Schaaf J V D, Schouten J C, et al. Experimental validation of Lagrangian-Eulerian simulations of fluidized beds[J]. Powder Technology, 2001, 116(2): 155-165.
|
24 |
Zhao B, Chen J J. Numerical analysis of particle deposition in ventilation duct[J]. Building and Environment, 2006, 41(6): 710-718.
|
25 |
Zhan F L, Zhuang D W, Ding G L, et al. Numerical model of particle deposition on fin surface of heat exchanger[J]. International Journal of Refrigeration, 2016, 72: 27-40.
|
26 |
王辉, 焦杨, 辛文宇, 等. 湿颗粒分离中的液桥力作用及临界分离初速度[J]. 大学物理, 2015, 7: 46-50.
|
|
Wang H, Jiao Y, Xin W Y, et al. Effect of liquid bridge force and critical velocity for the separation of wet granule[J]. College Physics, 2015, 7: 46-50.
|
27 |
Ramadan A, Skalle P, Johansen S T. A mechanistic model to determine the critical flow velocity required to initiate the movement of spherical bed particles in inclined channels[J]. Chemical Engineering Science, 2003, 58(10): 2153-2163.
|
28 |
Han H, He Y L, Tao W Q, et al. A parameter study of tube bundle heat exchangers for fouling rate reduction[J]. International Journal of Heat and Mass Transfer, 2014, 72(72): 210-221.
|
29 |
Abd-Elhady M S, Rindt C C M, Steenhoven A A V. Contact time of an incident particle hitting a 2D bed of particles[J]. Powder Technology, 2008, 191(3): 315-326.
|
30 |
Rabinovich E, Kalman H. Incipient motion of individual particles in horizontal particle-fluid systems: B. Theoretical analysis[J]. Powder Technology, 2009, 192(3): 326-338.
|