CIESC Journal ›› 2020, Vol. 71 ›› Issue (5): 1995-2003.DOI: 10.11949/0438-1157.20191300
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Hong LIU1,2(),Yajing ZHAO1,2,Yingdong LI1,2,Pingli LI1,2()
Received:
2019-10-31
Revised:
2020-02-28
Online:
2020-05-05
Published:
2020-05-05
Contact:
Pingli LI
刘宏1,2(),赵雅静1,2,李英栋1,2,李凭力1,2()
通讯作者:
李凭力
作者简介:
刘宏(1992—),男,硕士研究生,CLC Number:
Hong LIU, Yajing ZHAO, Yingdong LI, Pingli LI. Mechanical design and hydraulics simulation of a new complex internal heat integrated distillation column[J]. CIESC Journal, 2020, 71(5): 1995-2003.
刘宏, 赵雅静, 李英栋, 李凭力. 新型复合式内部能量集成的精馏塔的机械设计与水力学模拟[J]. 化工学报, 2020, 71(5): 1995-2003.
塔板数 | 提馏段质量分数 | 精馏段质量分数 | 传热系数/ (W/(m2·K)) | 换热管 面积/m2 | 降液板 面积/m2 | 总传热 面积/m2 | ||
---|---|---|---|---|---|---|---|---|
苯 | 甲苯 | 苯 | 甲苯 | |||||
1 | 0.4853 | 0.5146 | 0.9944 | 0.0055 | 850 | 1.46952 | 0.001287 | 1.470807 |
2 | 0.3568 | 0.6431 | 0.9871 | 0.0128 | 850 | 1.46952 | 0.001287 | 1.470807 |
3 | 0.2383 | 0.7616 | 0.9821 | 0.0178 | 850 | 1.2246 | 0.001287 | 1.225887 |
4 | 0.1478 | 0.8521 | 0.9729 | 0.0270 | 850 | 1.2246 | 0.001287 | 1.225887 |
5 | 0.0876 | 0.9123 | 0.9574 | 0.0425 | 850 | 1.30624 | 0.001716 | 1.307956 |
6 | 0.0509 | 0.9490 | 0.9318 | 0.0681 | 850 | 0.97968 | 0.001716 | 0.981396 |
7 | 0.0294 | 0.9705 | 0.8907 | 0.1092 | 850 | 0.849056 | 0.001716 | 0.850772 |
8 | 0.0170 | 0.9829 | 0.8280 | 0.1719 | 850 | 1.06132 | 0.002145 | 1.063465 |
9 | 0.0098 | 0.9901 | 0.7401 | 0.2598 | 850 | 0.8164 | 0.002145 | 0.818545 |
10 | 0.0054 | 0.9945 | 0.6314 | 0.3685 | 850 | 0.6123 | 0.002145 | 0.614445 |
Table 1 Result of HIDiC based on Aspen simulation
塔板数 | 提馏段质量分数 | 精馏段质量分数 | 传热系数/ (W/(m2·K)) | 换热管 面积/m2 | 降液板 面积/m2 | 总传热 面积/m2 | ||
---|---|---|---|---|---|---|---|---|
苯 | 甲苯 | 苯 | 甲苯 | |||||
1 | 0.4853 | 0.5146 | 0.9944 | 0.0055 | 850 | 1.46952 | 0.001287 | 1.470807 |
2 | 0.3568 | 0.6431 | 0.9871 | 0.0128 | 850 | 1.46952 | 0.001287 | 1.470807 |
3 | 0.2383 | 0.7616 | 0.9821 | 0.0178 | 850 | 1.2246 | 0.001287 | 1.225887 |
4 | 0.1478 | 0.8521 | 0.9729 | 0.0270 | 850 | 1.2246 | 0.001287 | 1.225887 |
5 | 0.0876 | 0.9123 | 0.9574 | 0.0425 | 850 | 1.30624 | 0.001716 | 1.307956 |
6 | 0.0509 | 0.9490 | 0.9318 | 0.0681 | 850 | 0.97968 | 0.001716 | 0.981396 |
7 | 0.0294 | 0.9705 | 0.8907 | 0.1092 | 850 | 0.849056 | 0.001716 | 0.850772 |
8 | 0.0170 | 0.9829 | 0.8280 | 0.1719 | 850 | 1.06132 | 0.002145 | 1.063465 |
9 | 0.0098 | 0.9901 | 0.7401 | 0.2598 | 850 | 0.8164 | 0.002145 | 0.818545 |
10 | 0.0054 | 0.9945 | 0.6314 | 0.3685 | 850 | 0.6123 | 0.002145 | 0.614445 |
理论板 | 精馏段开孔数 | 提馏段开孔数 | 塔径/mm | 提馏段筛孔直径/mm | 精馏段筛孔直径/mm | 精馏段 堰高 /mm | 提馏段堰高/mm | 内部列管壁厚/mm | 精馏段塔板液泛率 | 提馏段塔板液泛率 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 32 | 120 | 250 | 6 | 4 | 25 | 20 | 2 | 0.7 | 0.58 |
2 | 35 | 120 | 250 | 6 | 4 | 25 | 20 | 2 | 0.68 | 0.55 |
3 | 50 | 100 | 250 | 6 | 4 | 25 | 20 | 2 | 0.65 | 0.53 |
4 | 60 | 100 | 250 | 6 | 4 | 25 | 20 | 2 | 0.64 | 0.53 |
5 | 80 | 80 | 250 | 8 | 4 | 25 | 20 | 2 | 0.64 | 0.54 |
6 | 80 | 60 | 250 | 8 | 4 | 25 | 20 | 2 | 0.62 | 0.54 |
7 | 100 | 52 | 250 | 8 | 4 | 25 | 20 | 2 | 0.65 | 0.55 |
8 | 100 | 52 | 250 | 10 | 5 | 25 | 20 | 2 | 0.63 | 0.58 |
9 | 122 | 40 | 250 | 10 | 5 | 25 | 20 | 2 | 0.62 | 0.56 |
10 | 122 | 30 | 250 | 10 | 5 | 25 | 20 | 2 | 0.64 | 0.57 |
Table 2 Hydraulic parameters of HIDiC based on Aspen simulation
理论板 | 精馏段开孔数 | 提馏段开孔数 | 塔径/mm | 提馏段筛孔直径/mm | 精馏段筛孔直径/mm | 精馏段 堰高 /mm | 提馏段堰高/mm | 内部列管壁厚/mm | 精馏段塔板液泛率 | 提馏段塔板液泛率 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 32 | 120 | 250 | 6 | 4 | 25 | 20 | 2 | 0.7 | 0.58 |
2 | 35 | 120 | 250 | 6 | 4 | 25 | 20 | 2 | 0.68 | 0.55 |
3 | 50 | 100 | 250 | 6 | 4 | 25 | 20 | 2 | 0.65 | 0.53 |
4 | 60 | 100 | 250 | 6 | 4 | 25 | 20 | 2 | 0.64 | 0.53 |
5 | 80 | 80 | 250 | 8 | 4 | 25 | 20 | 2 | 0.64 | 0.54 |
6 | 80 | 60 | 250 | 8 | 4 | 25 | 20 | 2 | 0.62 | 0.54 |
7 | 100 | 52 | 250 | 8 | 4 | 25 | 20 | 2 | 0.65 | 0.55 |
8 | 100 | 52 | 250 | 10 | 5 | 25 | 20 | 2 | 0.63 | 0.58 |
9 | 122 | 40 | 250 | 10 | 5 | 25 | 20 | 2 | 0.62 | 0.56 |
10 | 122 | 30 | 250 | 10 | 5 | 25 | 20 | 2 | 0.64 | 0.57 |
精馏塔 | 压缩比 | 回流比 | 再沸器 负荷/kW | 冷凝器负荷/kW | 蒸汽/ (CNY/d) | 冷却水/ (CNY/d) | 电力/ (CNY/d) | 设备投资×10-4/ (CNY/a) | 运行总成本×10-4/(CNY/a) |
---|---|---|---|---|---|---|---|---|---|
CDIC | - | 10.2 | 40.2 | -40.2 | 125 | 58 | 0 | 1.3 | 7.9 |
HIDiC | 4 | 5.1 | 17.2 | -15.8 | 15 | 6 | 78.3 | 2.3 | 5.8 |
Table 3 Operating conditions and cost of CDIC and HIDiC
精馏塔 | 压缩比 | 回流比 | 再沸器 负荷/kW | 冷凝器负荷/kW | 蒸汽/ (CNY/d) | 冷却水/ (CNY/d) | 电力/ (CNY/d) | 设备投资×10-4/ (CNY/a) | 运行总成本×10-4/(CNY/a) |
---|---|---|---|---|---|---|---|---|---|
CDIC | - | 10.2 | 40.2 | -40.2 | 125 | 58 | 0 | 1.3 | 7.9 |
HIDiC | 4 | 5.1 | 17.2 | -15.8 | 15 | 6 | 78.3 | 2.3 | 5.8 |
材质 | 屈服强度/(N/m2) | 弹性模量/(N/m2) | 质量密度/(kg/m3) | 抗剪模量/(N/m2) | 泊松比 | 热扩张系数 /K-1 |
---|---|---|---|---|---|---|
304 | 2.06×108 | 1.9×1011 | 8000 | 7.5×1010 | 0.29 | 1.8×10-5 |
Table 4 Assembly property parameters for HIDiC
材质 | 屈服强度/(N/m2) | 弹性模量/(N/m2) | 质量密度/(kg/m3) | 抗剪模量/(N/m2) | 泊松比 | 热扩张系数 /K-1 |
---|---|---|---|---|---|---|
304 | 2.06×108 | 1.9×1011 | 8000 | 7.5×1010 | 0.29 | 1.8×10-5 |
参数 | 精馏段 | 提馏段 |
---|---|---|
降液管长/mm | 214 | 620 |
出口堰高/mm | 25 | 20 |
塔径/mm | 250 | 250 |
筛孔直径/mm | 5 | 10 |
Table 5 Geometrical characteristics of condition a for tray of CFD simulation
参数 | 精馏段 | 提馏段 |
---|---|---|
降液管长/mm | 214 | 620 |
出口堰高/mm | 25 | 20 |
塔径/mm | 250 | 250 |
筛孔直径/mm | 5 | 10 |
参数 | 精馏段 | 提馏段 |
---|---|---|
降液管长/mm | 214 | 620 |
出口堰高/mm | 20 | 20 |
塔径/mm | 200 | 200 |
筛孔直径/mm | 4 | 8 |
Table 6 Geometrical characteristics of condition b for tray of CFD simulation
参数 | 精馏段 | 提馏段 |
---|---|---|
降液管长/mm | 214 | 620 |
出口堰高/mm | 20 | 20 |
塔径/mm | 200 | 200 |
筛孔直径/mm | 4 | 8 |
1 | Lynd L R, Grethlein H E. Distillation with intermediate heat pumps and optimal sidestream return[J]. AIChE Journal, 1986, 32(8): 1347-1359. |
2 | 刘兴高, 钱积新. 内部热耦合精馏塔的初步设计(Ⅰ): 模型化和操作分析[J]. 化工学报, 2000, 51(3): 421-424. |
Liu X G, Qian J X. Principium design of ideal internal thermally coupled distillation columns (Ⅰ): Modeling and operation behavior[J]. Journal of Chemical Industry and Engineering (China), 2000, 51(3): 421-424. | |
3 | 刘兴高, 钱积新. 内部热耦合精馏塔的初步设计(Ⅱ): 控制分析和参数优化[J]. 化工学报, 2000, 51(3): 425-428. |
Liu X G, Qian J X. Principium design of ideal internal thermally coupled distillation columns (Ⅱ): Control analysis and parameter optimization[J]. Journal of Chemical Industry and Engineering(China), 2000, 51(3): 425-428. | |
4 | Tsirlin A M, Vyasileva E N, Romanova T S. Finding the thermodynamically optimal separation sequence for multicomponent mixtures and the optimum distribution of the heat-and mass-transfer surface areas[J]. Theoretical Foundations of Chemical Engineering, 2009, 43(3): 238-244. |
5 | 赵雄, 罗祎青, 闫兵海, 等. 内部能量集成精馏塔的模拟研究及其节能特性分析[J]. 化工学报, 2009, 60(1): 142-150. |
Zhao X, Luo Y Q, Yan B H, et al. Simulation study of internally heat-integrated distillation column and its characteristics for energy saving[J]. CIESC Journal, 2009, 60(1): 142-150. | |
6 | Kaibel G. Distillation columns with vertical partitions[J]. Chemical Engineering & Technology, 1987, 10(1): 92-98. |
7 | Bandyopadhyay S. Thermal integration of a distillation column through side-exchangers[J]. Chemical Engineering Research and Design, 2007, 85(1): 155-166. |
8 | Fitzmorris R E, Mah R S H. Improving distillation column design using thermodynamic availability analysis[J]. AIChE Journal, 1980, 26(2): 265-273. |
9 | Mah R S H, Nicholas Jr J J, Wodnik R B. Distillation with secondary reflux and vaporization: a comparative evaluation[J]. AIChE Journal, 1977, 23(5): 651-658. |
10 | Nakaiwa M, Huang K, Endo A, et al. Internally heat-integrated distillation columns: a review[J]. Chemical Engineering Research and Design, 2003, 81(1): 162-177. |
11 | Olujic Z, Fakhri F, de Rijke A, et al. Internal heat integration-the key to an energy-conserving distillation column[J]. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 2003, 78(2/3): 241-248. |
12 | 陈大为. 精馏塔内部能量集成方式及其比较[D]. 天津: 天津大学, 2013. |
Chen D W. Configuration and their comparison for internal heat integration in distillation columns[D]. Tianjin: Tianjin University, 2013. | |
13 | Gadalla M, Jiménez L, Olujic Z, et al. A thermo-hydraulic approach to conceptual design of an internally heat-integrated distillation column (i-HIDiC)[J]. Computers and Chemical Engineering, 2007, 31(10):1346-1354. |
14 | Cabrera-Ruiz J, Jiménez-Gutiérrez A, Segovia-Hernández J G. Assessment of the implementation of heat-integrated distillation columns for the separation of ternary mixtures[J]. Industrial & Engineering Chemistry Research, 2011, 50(4): 2176-2181. |
15 | Wakabayashi T, Hasebe S. Higher energy saving with new heat integration arrangement in heat-integrated distillation column[J]. AIChE Journal, 2015, 61(10): 3479-3488. |
16 | Cong L, Liu X. Temperature inferential control of heat-integrated distillation column based on variable sensitive stage temperature set-point[J]. The Canadian Journal of Chemical Engineering, 2019, 97(11): 2952-2960. |
17 | Jana A K. A novel divided-wall heat integrated distillation column: thermodynamic and economic feasibility[J]. Industrial & Engineering Chemistry Research, 2018, 57(36): 12127-12135. |
18 | Wendt M, Königseder R, Li P, et al. Theoretical and experimental studies on startup strategies for a heat-integrated distillation column system[J]. Chemical Engineering Research and Design, 2003, 81(1): 153-161. |
19 | 许良华. 精馏系统内部能量集成的实验与模拟分析研究[D]. 天津: 天津大学, 2013. |
Xu L H. On experimental and simulation analysis for distillation systems with internal heat integration[D]. Tianjin: Tianjin University, 2013. | |
20 | 龚超. 完全热耦合精馏塔的设计与模拟研究[D]. 天津: 天津大学, 2012. |
Gong C. The design and simulation of fully thermally coupled distillation column[D]. Tianjin: Tianjin University, 2012. | |
21 | 陈旭东. 塔段透热能量集成精馏塔模拟及研究[D]. 天津: 天津大学, 2009. |
Chen X D. Simulation of diabatic distillation with heat integration between column sections[D]. Tianjin: Tianjin University, 2009. | |
22 | Gadalla M, Jiménez L, Olujic Z, et al. A thermo-hydraulic approach to conceptual design of an internally heat-integrated distillation column (i-HIDiC)[J]. Computers & Chemical Engineering, 2007, 31(10): 1346-1354. |
23 | Bisgaard T, Skogestad S, Huusom J K, et al. Optimal operation and stabilising control of the concentric heat-integrated distillation column[J]. Computers & Chemical Engineering, 2016, 49(7): 747-752. |
24 | 徐琰, 董海峰, 田肖, 等. 鼓泡塔中离子液体-空气两相流的 CFD-PBM 耦合模拟[J]. 化工学报, 2011, 62(10): 2699-2706. |
Xu Y, Dong H F, Tian X, et al. CFD-PBM coupled simulation of ionic liquid-air two-phase flow in bubble column[J]. CIESC Journal, 2011, 62(10): 2699-2706. | |
25 | 王立成, 王晓玲, 刘雪艳, 等. CFD在精馏分离中的应用[J]. 化工进展, 2009, 28(s2): 351-354. |
Wang L C, Wang X L, Liu X Y, et al. Application of CFD in distillation separation[J]. Chemical Industry and Engineering Progress, 2009, 28(s2): 351-354. | |
26 | 王峰, 张继军, 张少峰. 计算流体力学(CFD)在精馏塔板上的应用[J]. 现代化工, 2014, 34(1):152-156. |
Wang F,Zhang J J,Zhang S F. Research progress of computational fluid dynamics in distillation tray[J]. Modern Chemical Industry, 2014, 34(1):152-156. | |
27 | Wang Y, Du S, Zhu H G, et al. CFD simulation of hydraulics of dividing wall sieve trays[J]. Advanced Materials Research, 2012, 476/477/478:1345-1350. |
28 | Rodríguez-Ángeles M A, Gómez-Castro F I, Segovia-Hernández J G, et al. Mechanical design and hydrodynamic analysis of sieve trays in a dividing wall column for a hydrocarbon mixture[J]. Chemical Engineering and Processing: Process Intensification, 2015, 97: 55-65. |
29 | Zarei A, Hosseini S H, Rahimi R. CFD and experimental studies of liquid weeping in the circular sieve tray columns[J]. Chemical Engineering Research and Design, 2013, 91(12): 2333-2345. |
30 | 聂勇, 计建炳, 徐之超, 等. 复合塔板气液运动的实验研究[J]. 高校化学工程学报, 2003, 17(4): 365-371. |
Nie Y, Ji J B, Xu Z C, et al. Study on the gas-liquid performance of the compound tray[J]. Journal of Chemical Engineering of Chinese Universities, 2003, 17(4): 365-371. | |
31 | 李凭力, 刘宏, 李英栋, 等. 一种新型内部能量集成的精馏塔系统配套装置及方法: 110180205A[P]. 2019-08-30. |
Li P L, Liu H, Li Y D, et al. A new type of internal energy integrated distillation system supporting device and method: 110180205A[P]. 2019-08-30. | |
32 | Jiang S, Gao H, Sun J, et al. Modeling fixed triangular valve tray hydraulics using computational fluid dynamics[J]. Chemical Engineering and Processing: Process Intensification, 2012, 52(2): 74-84. |
33 | Krishna R, van Baten J M. Modelling sieve tray hydraulics using computational fluid dynamics[J]. Chemical Engineering Research and Design, 2003, 81(1): 27-38. |
[1] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[2] | Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers [J]. CIESC Journal, 2023, 74(2): 796-806. |
[3] | WANG Dongliang, XIE Jiangpeng, ZHOU Huairong, MENG Wenliang, YANG Yong, LI Delei. Parameters analysis and energy integration in flue gas SO2 capture process based on MDEA [J]. CIESC Journal, 2021, 72(3): 1521-1528. |
[4] | PENG Xiaoyi, DONG Xuan, LIAO Zuwei, YANG Yao, SUN Jingyuan, JIANG Binbo, WANG Jingdai, YANG Yongrong. Optimal design of heat integrated water allocation networks combining mathematical programming with graphical tools [J]. CIESC Journal, 2021, 72(2): 1047-1058. |
[5] | Zhuodong SONG, Zuoyi ZHANG, Xuelong PAN, Yunfang WANG. Determination and correlation of vapor-liquid equilibrium for polyoxymethylene dimethyl ether system [J]. CIESC Journal, 2020, 71(S1): 1-6. |
[6] | ZHENG Haifeng1,YIN Hong1,YUAN Shenfeng1,CHEN Zhirong1,LIU Chengfeng2. Research progress in the pyrolysis of 1-chloro-1,1-difluoroethane to vinylidene fluoride [J]. Chemical Industry and Engineering Progree, 2014, 33(01): 16-20. |
[7] | WU Xianli, WU Lianying, HU Yangdong. Total site gradual energy integration and optimization strategy based on T-H diagram [J]. CIESC Journal, 2013, 64(5): 1696-1703. |
[8] | ZHANG Weijiang, LI Bo, XU Jiao, WANG Nannan. Research advances in purification technologies for boron trifluoride [J]. Chemical Industry and Engineering Progree, 2012, 31(12): 2603-2608. |
[9] | KONG Dingfeng,LIU Jianhua,WANG Jin,ZHANG Liang,FANG Zhiyun,WU Zhimin. Experiment and simulation of rectification process with sieve trays for a single stage ammonia-water absorption chiller [J]. , 2010, 29(10): 1825-. |
[10] | WEI Haiou,LI You,LI Zhongjie,XIANG Shuguang. Energy-saving technology in vinyl chloride monomer production [J]. , 2009, 28(4): 592-. |
[11] | LI Jianlie, RONG Gang. Improved Mixed Integer Optimization Approach for Data Rectification with Gross Error Candidates [J]. , 2009, 17(2): 226-231. |
[12] | CHANG Qiulian,ZHOU Wei,WANG Baohua,LI Qunsheng1. Research and application of wastewater treatment technology and material recovery in organic plant [J]. , 2008, 27(6): 958-. |
[13] | Wolfgang Marquardt, Sven Kossack, Korbinian Kraemer. A Framework for the Systematic Design of Hybrid Separation Processes [J]. , 2008, 16(3): 333-342. |
[14] | WANG Gang,FENG Xiao. CO2 emission reduction through energy integration [J]. , 2006, 25(12): 1467-. |
[15] |
Duan Xuechen, ZhaoTiancong.
Preparation of Arsenic Oxide and High Purity UltrafineAntimony Compounds from Flue Dust Containing Arsenic and Antimony [J]. , 1999, 7(3): 278-282. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 198
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 595
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||