CIESC Journal ›› 2020, Vol. 71 ›› Issue (11): 5150-5158.DOI: 10.11949/0438-1157.20200270
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Ye WANG1,2(),Zhendong SUN1,Ruijun WANG1,Hongyu LU1,Yue CHANG1
Received:
2020-03-16
Revised:
2020-07-05
Online:
2020-11-05
Published:
2020-11-05
Contact:
Ye WANG
通讯作者:
王烨
作者简介:
王烨(1972—),男,博士,教授, 基金资助:
CLC Number:
Ye WANG,Zhendong SUN,Ruijun WANG,Hongyu LU,Yue CHANG. POD analysis of flow and heat transfer performance of tube fin heat exchanger on different boundary conditions[J]. CIESC Journal, 2020, 71(11): 5150-5158.
王烨,孙振东,王瑞君,鲁红钰,常悦. 不同边界条件下管翅式换热器流动与传热性能的POD分析[J]. 化工学报, 2020, 71(11): 5150-5158.
Add to citation manager EndNote|Ris|BibTeX
样本数据 | Rea | Tp/mm | S1/mm | 样本个数 |
---|---|---|---|---|
单参数 | A | 5 | 40 | 15 |
双参数 | A | B | 40 | 45 |
三参数 | A | B | C | 225 |
Table 1 Sample parameters
样本数据 | Rea | Tp/mm | S1/mm | 样本个数 |
---|---|---|---|---|
单参数 | A | 5 | 40 | 15 |
双参数 | A | B | 40 | 45 |
三参数 | A | B | C | 225 |
等热流 | 温度场 | 速度场 | 等壁温 | 温度场 | 速度场 |
---|---|---|---|---|---|
单参数 | 9 | 9 | 单参数 | 8 | 9 |
双参数 | 28 | 27 | 双参数 | 24 | 26 |
三参数 | 81 | 80 | 三参数 | 70 | 80 |
Table 2 Selection of the number of basis functions
等热流 | 温度场 | 速度场 | 等壁温 | 温度场 | 速度场 |
---|---|---|---|---|---|
单参数 | 9 | 9 | 单参数 | 8 | 9 |
双参数 | 28 | 27 | 双参数 | 24 | 26 |
三参数 | 81 | 80 | 三参数 | 70 | 80 |
计算方法 | 耗时/s | FVM/POD |
---|---|---|
FVM算法 | 14508 | |
POD方法 | ||
单参数,线性插值 | 4.69 | 3093.39 |
双参数,线性插值 | 8.39 | 1729.20 |
三参数,线性插值 | 21.02 | 690.20 |
Table 4 Calculating time of different methods
计算方法 | 耗时/s | FVM/POD |
---|---|---|
FVM算法 | 14508 | |
POD方法 | ||
单参数,线性插值 | 4.69 | 3093.39 |
双参数,线性插值 | 8.39 | 1729.20 |
三参数,线性插值 | 21.02 | 690.20 |
1 | 林志敏. 扭带及涡产生器在管内诱导的二次流强度及其强化传热特性研究[D]. 兰州: 兰州交通大学, 2011. |
Lin Z M. The characteristics of secondary flow and heat transfer enhancement in circular tube with twisted tape or vortex generators[D]. Lanzhou: Lanzhou Jiaotong University, 2011. | |
2 | 宋付权. 油藏模拟的过去、现状和未来[J]. 国外油田工程, 2001, 17(1): 40-49. |
Song F Q. Past, current and future of reservoir simulation[J]. Foreign Oilfield Engineering, 2001, 17(1): 40-49. | |
3 | 李成政, 石陕龙, 李成翔, 等. 油田开发中油藏数值模拟技术的应用及发展[J]. 中国石油和化工标准与质量, 2013, 33: 155. |
Li C Z, Shi S L, Li C X, et al. Application and development of reservoir numerical simulation technology in oilfield development[J]. China Petroleum and Chemical Standards and Quality, 2013, 33: 155. | |
4 | Prithiviraj M, Andrews M J. Three-dimensional numerical simulation of shell-and-tube heat exchangers(Ⅱ): Heat transfer [J]. Numerical Heat Transfer Part A, 1998, 33: 817-828. |
5 | 李波, 龚春林, 粟华, 等. 本征正交分解在翼型气动优化中的应用研究[J]. 上海航天, 2017, 34(5): 117-123. |
Li B, Gong C L, Su H, et al. Research and application on proper orthogonal decomposition in aerodynamic optimization of airfoil[J]. Aerospace Shanghai, 2017, 34(5): 117-123. | |
6 | 李庭宇. 黏弹性减阻流动的离散元素POD模型研究[D]. 北京: 中国石油大学, 2017. |
Li T Y. Study on POD-ROM of viscoelastic drag-reducing flow based on the spring-dumbbell model[D]. Beijing: China University of Petroleum, 2017. | |
7 | Wang Y, Wang Y, Cheng Z. Direct numerical simulation of gas-liquid drag-reducing cavity flow by the VOSET method[J]. Polymers, 2019, 11(4): 596-613. |
8 | Wang Y. Reynolds stress model for viscoelastic drag-reducing flow induced by polymer solution[J]. Polymers, 2019, 11(10): 1659-1670. |
9 | Wang Y, Sun S Y, Gong L, et al. A globally mass-conservative method for dual-continuum gas reservoir simulation[J]. Journal of Natural Gas Science and Engineering, 2018, 53: 301-316. |
10 | Wang Y, Yu B, Wang Y. Acceleration of gas reservoir simulation using proper orthogonal decomposition[J]. Geofluids, 2018, 2018: 8482352. |
11 | Wang Y, Sun S Y, Yu B. Acceleration of gas flow simulations in dual-continuum porous media based on the mass-conservation POD method[J]. Energies, 2017, 10(9): 1-17. |
12 | Sun Y, Sun S X, Zhang J Y, et al. Reconstruction of wind velocity distribution using POD model[J]. Energy Procedia, 2016, 100: 137-140. |
13 | 王艺, 薛文第, 宇波, 等. 双孔双渗介质中气体流动的POD模型研究[J]. 工程热物理学报, 2018, 39(5): 1063-1069. |
Wang Y, Xue W D, Yu B, et al. POD modeling for gas flow in dual-porosity dual-permeability porous media[J]. Journal of Engineering Thermophysics, 2018, 39(5): 1063-1069. | |
14 | Luo Z D, Li H, Zhou Y J, et al. A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem[J]. Journal of Mathematical Analysis and Applications, 2012, 385(1): 310-321. |
15 | Luo Z D, Li L, Sun P. A reduced-order MFE formulation based on POD method for parabolic equations[J]. Acta Mathematica Scientia, 2013, 33B(5): 1471-1484. |
16 | Han D X, Yu B, Wang Y, et al. Fast thermal simulation of a heated crude oil pipeline with a BFC-based POD reduced-order model[J]. Applied Thermal Engineering, 2015, 88: 217-229. |
17 | 张文轲, 张劲军, 宇波. 热油管道油温波动随机数值模拟及影响因素敏感性分析[J]. 中国石油大学学报(自然科学版), 2011, 35(2): 141-146. |
Zhang W K, Zhang J J, Yu B. Stochastic numerical simulation on oil temperature fluctuations of hot crude pipe lines and sensitivity analysis to related factors[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(2): 141-146. | |
18 | 韩东旭. 基于适体坐标的POD低阶模型研究及其在热油管道中的应用[D]. 北京: 中国石油大学, 2016. |
Han D X. Study on BFC based POD reduced-order model and its application on heated oil pipeline[D]. Beijing: China University of Petroleum, 2016. | |
19 | 叶永友, 何承高. 海上风力发电塔脉动风速模拟研究[J]. 价值工程, 2018, 35: 151-153. |
Ye Y Y, He C G. Simulation of fluctuating wind velocity on the offshore wind turbine[J]. Value Engineering, 2018, 35: 151-153. | |
20 | Tanya K V, Geoffrey M O. Model reduction of dynamical systems by proper orthogonal decomposition: error bounds and comparison of methods using snapshots from the solution and the time derivatives[J]. Journal of Computational and Applied Mathematics, 2018, 330: 553-573. |
21 | Deokar R, Shimada M, Lin C, et al. On the treatment of high-frequency issues in numerical simulation for dynamic systems by model order reduction via the proper orthogonal decomposition[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 325: 139-154. |
22 | 张震宇. 风力机翼型动态失速的POD模型降阶方法[J]. 南京航空航天大学学报, 2011, 43(5): 577-580. |
Zhang Z Y. Reduced-order POD model for dynamic stall of wind turbine airfoils[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(5): 577-580. | |
23 | Saeed E A, Ahmed R, Daniel L. Damage detection in structural systems utilizing artificial neural networks and proper orthogonal decomposition[J]. Structural Control and Health Monitoring, 2019, (26): 1-24. |
24 | 罗杰, 段焰辉, 蔡晋生. 基于本征正交分解的速度场快速预测方法研究[J]. 航空工程进展, 2014, 5(3): 350-357. |
Luo J, Duan Y H, Cai J S. A quick method of flow field prediction based on proper orthogonal decomposition[J]. Advances in Aeronautical Science and Engineering, 2014, 5(3): 350-357. | |
25 | 周晅毅, 李刚. POD结合薄板样条插值法在风压预测中的应用[J]. 建筑结构, 2011, 41(6): 98-109. |
Zhou X Y, Li G. Application of POD combined with thin-plate splines in research on wind pressure[J]. Building Structure, 2011, 41(6): 98-109. | |
26 | 江棹荣, 倪振华, 谢壮宁. 本征正交分解技术在屋盖风压场重建与预测中的应用[J]. 应用力学学报, 2007, 24(4): 592-598. |
Jiang Z R, Ni Z H, Xie Z N. Reconstruction and prediction of wind pressure field on roof[J]. Chinese Journal of Applied Mechanics, 2007, 24(4): 592-598. | |
27 | 王友武. 广州塔高空风场特性与风压预测[D]. 长沙: 湖南大学, 2012. |
Wang Y W. Wind characteristics of Guangzhou tower at high altitude and prediction of wind pressures[D]. Changsha: Hunan University, 2012. | |
28 | 王烨, 王艺, 胡文婷, 等. POD方法在扁管管翅式换热器研究中的应用[J]. 计算物理, 2018, 35(5): 587-596. |
Wang Y, Wang Y, Hu W T, et al. Application of POD reduced-order model to the study of heat transfer performance of flat tube bank fin heat exchanger[J]. Chinese Journal of Computational Physics, 2018, 35(5): 587-596. | |
29 | 王烨, 王良璧. 翅片材料对扁管管翅式换热器耦合传热特性影响[J]. 应用基础与工程科学学报, 2017, 25(4): 824-834. |
Wang Y, Wang L B. Influence of fin material on the conjugate heat transfer characteristics of flat tube bank fin heat exchanger[J]. Journal of Basic Science and Engineering, 2017, 25(4): 824-834. | |
30 | 宇波.流动与传热数值计算——若干问题的研究与探讨[M].北京: 科学出版社, 2015. |
Yu B. Numerical Calculation of Flow and Heat Transfer: Research and Discussion on Some Problems[M]. Beijing: Science Press, 2015. | |
31 | Kylikof U A. The Cooling System of Diesel Locomotive[M]. Moscow: Machine Construction Press, 1988. |
[1] | Bingshan MA, Haochen ZHAO, Ye WANG, Chengzhi SHI, Ruijun WANG, Hongyu LU, Yue CHANG. A new method of numerical design for flat tube fin heat exchanger [J]. CIESC Journal, 2020, 71(S2): 104-110. |
[2] | CUI Wenzhi, YIN Fei. Fields synergy analysis of turbulent heat transfer in helically coiled tube with non-uniform surface heat flux [J]. CIESC Journal, 2014, 65(S1): 229-234. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||