CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 42-60.DOI: 10.11949/0438-1157.20201099
• Reviews and monographs • Previous Articles Next Articles
SU Yaoyao1(
),LI Pingfan1,WANG Wei1,2(
),JU Xiaojie1,2,XIE Rui1,2,LIU Zhuang1,2,CHU Liangyin1,2
Received:2020-08-03
Revised:2020-11-19
Online:2021-01-05
Published:2021-01-05
Contact:
WANG Wei
苏瑶瑶1(
),李平凡1,汪伟1,2(
),巨晓洁1,2,谢锐1,2,刘壮1,2,褚良银1,2
通讯作者:
汪伟
作者简介:苏瑶瑶(1994—),女,博士研究生,基金资助:CLC Number:
SU Yaoyao, LI Pingfan, WANG Wei, JU Xiaojie, XIE Rui, LIU Zhuang, CHU Liangyin. Controllable fabrication of functional microparticle materials from microfluidic droplet templates[J]. CIESC Journal, 2021, 72(1): 42-60.
苏瑶瑶, 李平凡, 汪伟, 巨晓洁, 谢锐, 刘壮, 褚良银. 微流控液滴模板法可控构建功能微颗粒材料[J]. 化工学报, 2021, 72(1): 42-60.
Add to citation manager EndNote|Ris|BibTeX
| 1 | Li M, Wang W, Zhang Z, et al. Monodisperse Na2SO4·10H2O@SiO2 microparticles against supercooling and phase separation during phase change for efficient energy storage [J]. Ind. Eng. Chem. Res., 2017, 56(12): 3297-3308. |
| 2 | Zhao X, Liu Y X, Yu Y R, et al. Hierarchically porous composite microparticles from microfluidics for controllable drug delivery [J]. Nanoscale, 2018, 10(26): 12595-12604. |
| 3 | Chung H J, Park T G. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering [J]. Adv. Drug Deliv. Rev., 2007, 59(4/5): 249-262. |
| 4 | Zhang M J, Chen T, Zhang P, et al. Magnetic hierarchical porous SiO2 microparticles from droplet microfluidics for water decontamination [J]. Soft Matter, 2020, 16(10): 2581-2593. |
| 5 | Zhang M J, Wang W, Yang X L, et al. Uniform microparticles with controllable highly interconnected hierarchical porous structures [J]. ACS Appl. Mater. Interfaces, 2015, 7(25): 13758-13767. |
| 6 | He F, Zhang M J, Wang W, et al. Designable polymeric microparticles from droplet microfluidics for controlled drug release [J]. Adv. Mater. Technol., 2019, 4(6): 1800687. |
| 7 | Wu F, Wang W, Liu L, et al. Monodisperse hybrid microcapsules with an ultrathin shell of submicron thickness for rapid enzyme reactions [J]. J. Mater. Chem. B, 2015, 3(5): 796-803. |
| 8 | De La Vega J C, Elischer P, Schneider T, et al. Uniform polymer microspheres: monodispersity criteria, methods of formation and applications [J]. Nanomedicine, 2013, 8(2): 265-285. |
| 9 | 蔡泉威, 巨晓洁, 谢锐, 等. 微流控技术可控制备异形微颗粒功能材料的研究进展[J]. 化工学报, 2019, 70(10): 3738-3747. |
| Cai Q W, Ju X J, Xie R, et al. Recent progress in controllable preparation of anisotropic microparticle functional materials based on microfluidics[J]. CIESC Journal, 2019, 70(10): 3738-3747. | |
| 10 | Damasceno P F, Engel M, Glotzer S C. Predictive self-assembly of polyhedra into complex structures [J]. Science, 2012, 337(6093): 453-457. |
| 11 | Sacanna S, Irvine W T M, Chaikin P M, et al. Lock and key colloids [J]. Nature, 2010, 464(7288): 575-578. |
| 12 | Wang W, Xie R, Ju X J, et al. Controllable microfluidic production of multicomponent multiple emulsions [J]. Lab Chip, 2011, 11(9): 1587-1592. |
| 13 | Chu L Y, Utada A S, Shah R K, et al. Controllable monodisperse multiple emulsions [J]. Angew. Chem. Int. Ed., 2007, 46(47): 8970-8974. |
| 14 | 鲍博, 赵双良, 徐建鸿. 基于微纳流控技术的流体相态特性研究进展[J]. 化工学报, 2018, 69(11): 4530-4541. |
| Bao B, Zhao S L, Xu J H. Progress in studying fluid phase behaviours with micro- and nano-fluidic technology[J]. CIESC Journal, 2018, 69(11): 4530-4541. | |
| 15 | Wang W, Zhang M J, Chu L Y. Functional polymeric microparticles engineered from controllable microfluidic emulsions [J]. ACC. Chem. Res., 2014, 47(2): 373-384. |
| 16 | Wang B J, Prinsen P, Wang H Z, et al. Macroporous materials: microfluidic fabrication, functionalization and applications [J]. Chem. Soc. Rev., 2017, 46(3): 855-914. |
| 17 | Li W, Zhang L Y, Ge X H, et al. Microfluidic fabrication of microparticles for biomedical applications [J]. Chem. Soc. Rev., 2018, 47(15): 5646-5683. |
| 18 | Whitesides G M. The origins and the future of microfluidics [J]. Nature, 2006, 442(7101): 368-373. |
| 19 | Abate A R, Weitz D A. High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics [J]. Small, 2009, 5(18): 2030-2032. |
| 20 | Meng Z J, Wang W, Liang X, et al. Plug-n-play microfluidic systems from flexible assembly of glass-based flow-control modules [J]. Lab Chip, 2015, 15(8): 1869-1878. |
| 21 | Deng N N, Meng Z J, Xie R, et al. Simple and cheap microfluidic devices for the preparation of monodisperse emulsions [J]. Lab Chip, 2011, 11(23): 3963-3969. |
| 22 | Utada A S, Chu L Y, Fernandez-Nieves A, et al. Dripping, jetting, drops, and wetting: the magic of microfluidics [J]. MRS Bull., 2007, 32(9): 702-708. |
| 23 | Utada A S, Fernandez-Nieves A, Stone H A, et al. Dripping to jetting transitions in coflowing liquid streams [J]. Physical Review Letters, 2007, 99(9): 094502. |
| 24 | Mou C L, Wang W, Li Z L, et al. Trojan-horse-like stimuli-responsive microcapsules [J]. Adv. Sci., 2018, 5(6): 1700960. |
| 25 | Lu Y, Fan H, Stump A, et al. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles [J]. Nature, 1999, 398(6724): 223-226. |
| 26 | Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359(6397): 710-712. |
| 27 | Warren S C, Messina L C, Slaughter L S, et al. Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly [J]. Science, 2008, 320(5884): 1748-1752. |
| 28 | Velev O D, Lenhoff A M, Kaler E W. A class of microstructured particles through colloidal crystallization [J]. Science, 2000, 287(5461): 2240-2243. |
| 29 | Mou C L, Ju X J, Zhang L, et al. Monodisperse and fast-responsive poly(N-isopropylacrylamide) microgels with open-celled porous structure [J]. Langmuir, 2014, 30(5): 1455-1464. |
| 30 | Kim T K, Yoon J J, Lee D S, et al. Gas foamed open porous biodegradable polymeric microspheres [J]. Biomaterials, 2006, 27(2): 152-159. |
| 31 | Davis S A, Burkett S L, Mendelson N H, et al. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases [J]. Nature, 1997, 385(6615): 420-423. |
| 32 | Chu L Y, Kim J W, Shah R K, et al. Monodisperse thermoresponsive microgels with tunable volume-phase transition kinetics [J]. Adv. Funct. Mater., 2007, 17(17): 3499-3504. |
| 33 | Li Z L, Wang W, Li M, et al. Facile fabrication of bubble-propelled micromotors carrying nanocatalysts for water remediation [J]. Ind. Eng. Chem. Res., 2018, 57(13): 4562-4570. |
| 34 | Su Y Y, Zhang M J, Wang W, et al. Bubble-propelled hierarchical porous micromotors from evolved double emulsions [J]. Ind. Eng. Chem. Res., 2019, 58(4): 1590-1600. |
| 35 | Chen L, Zhang M J, Zhang S Y, et al. Simple and continuous fabrication of self-propelled micromotors with photocatalytic metal-organic frameworks for enhanced synergistic environmental remediation [J]. ACS Appl. Mater. Interfaces, 2020, 12(31): 35120-35131. |
| 36 | Mu X T, Ju X J, Zhang L, et al. Chitosan microcapsule membranes with nanoscale thickness for controlled release of drugs [J]. J. Membr. Sci., 2019, 590: 117275. |
| 37 | Wei J, Ju X J, Zou X Y, et al. Multi-stimuli-responsive microcapsules for adjustable controlled-release [J]. Adv. Funct. Mater., 2014, 24(22): 3312-3323. |
| 38 | Yang X L, Ju X J, Mu X T, et al. Core-shell chitosan microcapsules for programmed sequential drug release [J]. ACS Appl. Mater. Interfaces, 2016, 8(16): 10524-10534. |
| 39 | Wang Y, Gao S, Ye W H, et al. Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer [J]. Nat. Mater., 2006, 5(10): 791-796. |
| 40 | Pei Y T, Wei C, Hedrick J L, et al. Co-delivery of drugs and plasmid DNA for cancer therapy [J]. Adv. Drug Deliv. Rev., 2016, 98: 41-63. |
| 41 | Richardson T P, Peters M C, Ennett A B, et al. Polymeric system for dual growth factor delivery [J]. Nat. Biotechnol., 2001, 19(11): 1029-1034. |
| 42 | Jiang Y, Sun Q, Zhang L, et al. Capsules-in-bead scaffold: a rational architecture for spatially separated multienzyme cascade system [J]. J. Mater. Chem., 2009, 19(47): 9068-9074. |
| 43 | He F, Wang W, He X H, et al. Controllable multicompartmental capsules with distinct cores and shells for synergistic release [J]. ACS Appl. Mater. Interfaces, 2016, 8(13): 8743-8754. |
| 44 | Kreft O, Prevot M, Moehwald H, et al. Shell-in-shell microcapsules: a novel tool for integrated, spatially confined enzymatic reactions [J]. Angew. Chem. Int. Ed., 2007, 46(29): 5605-5608. |
| 45 | Liu X, Zhou P, Huang Y, et al. Hierarchical proteinosomes for programmed release of multiple components [J]. Angew. Chem. Int. Ed., 2016, 55(25): 7095-7100. |
| 46 | Peters R J R W, Marguet M, Marais S, et al. Cascade reactions in multicompartmentalized polymersomes [J]. Angew. Chem. Int. Ed., 2014, 53(1): 146-150. |
| 47 | Wang W, Luo T, Ju X J, et al. Microfluidic preparation of multicompartment microcapsules for isolated co-encapsulation and controlled release of diverse components [J]. Int. J. Nonlinear Sci. Numer. Simul., 2012, 13(5): 325-332. |
| 48 | Sengupta S, Eavarone D, Capila I, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system [J]. Nature, 2005, 436(7050): 568-572. |
| 49 | He C, Tang Z, Tian H, et al. Co-delivery of chemotherapeutics and proteins for synergistic therapy [J]. Adv. Drug Deliv. Rev., 2016, 98: 64-76. |
| 50 | Mou C L, Wang W, Ju X J, et al. Dual-responsive microcarriers with sphere-in-capsule structures for co-encapsulation and sequential release [J]. J. Taiwan Inst. Chem. Eng., 2018, 98: 63-69. |
| 51 | Geng Y, Dalhaimer P, Cai S, et al. Shape effects of filaments versus spherical particles in flow and drug delivery [J]. Nat. Nanotechnol., 2007, 2(4): 249-255. |
| 52 | Ishiyama K, Sendoh M, Yamazaki A, et al. Swimming micro-machine driven by magnetic torque [J]. Sens. Actuators, A, 2001, 91(1/2): 141-144. |
| 53 | Donev A, Cisse I, Sachs D, et al. Improving the density of jammed disordered packings using ellipsoids [J]. Science, 2004, 303: 990-993. |
| 54 | Cai Q W, Ju X J, Zhang S Y, et al. Controllable fabrication of functional microhelices with droplet microfluidics [J]. ACS Appl. Mater. Interfaces, 2019, 11(49): 46241-46250. |
| 55 | Cai Q W, Ju X J, Chen C, et al. Fabrication and flow characteristics of monodisperse bullet-shaped microparticles with controllable structures [J]. Chem. Eng. J., 2019, 370: 925-937. |
| 56 | Tang M J, Wang W, Li, Z L, et al. Controllable microfluidic fabrication of magnetic hybrid microswimmers with hollow helical structures [J]. Ind. Eng. Chem. Res., 2018, 57(29): 9430-9438. |
| 57 | Wang W, He X H, Zhang M J, et al. Controllable microfluidic fabrication of microstructured materials from nonspherical particles to helices [J]. Macromol. Rapid Commun., 2017, 38(23): 1700429. |
| 58 | Nie Z H, Xu S Q, Seo M, et al. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors [J]. J. Am. Chem. Soc., 2005, 127(22): 8058-8063. |
| 59 | Wang W, Zhang M J, Xie R, et al. Hole-shell microparticles from controllably evolved double emulsions [J]. Angew. Chem. Int. Ed., 2013, 52(31): 8084-8087. |
| 60 | Tottori S, Zhang L, Qiu F, et al. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport [J]. Adv. Mater., 2012, 24(6): 811-816. |
| 61 | Peyer K E, Zhang L, Nelson B J. Localized non-contact manipulation using artificial bacterial flagella [J]. Appl. Phys. Lett., 2011, 99(17): 174101. |
| 62 | Mcnaughton B H, Anker J N, Kopelman R. Magnetic microdrill as a modulated fluorescent pH sensor [J]. J. Magn. Magn. Mater., 2005, 293(1): 696-701. |
| 63 | Sato F, Jojo M, Matsuki H, et al. The operation of a magnetic micromachine for hyperthermia and its exothermic characteristic [J]. IEEE Trans. Magn., 2002, 38(5): 3362-3364. |
| 64 | Ghosh A, Fischer P. Controlled propulsion of artificial magnetic nanostructured propellers [J]. Nano Lett., 2009, 9(6): 2243-2245. |
| 65 | Li W, Greener J, Voicu D, et al. Multiple modular microfluidic (M3) reactors for the synthesis of polymer particles [J]. Lab Chip, 2009, 9(18): 2715-2721. |
| 66 | Conchouso D, Castro D, Khan S A, et al. Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions [J]. Lab Chip, 2014, 14(16): 3011-3020. |
| 67 | Yadavali S, Jeong H H, Lee D, et al. Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles [J]. Nat. Commun., 2018, 9(1): 1222. |
| [1] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
| [2] | Lu DENG, Xiaojie JU, Wenjie ZHANG, Rui XIE, Wei WANG, Zhuang LIU, Dawei PAN, Liangyin CHU. Controllable preparation of radioactive chitosan embolic microspheres by microfluidic method [J]. CIESC Journal, 2023, 74(4): 1781-1794. |
| [3] | Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364. |
| [4] | Dawei PAN, Wei WANG, Rui XIE, Xiaojie JU, Zhuang LIU, Liangyin CHU. Progress on regulation of meso-scale structures for microfluidic emulsion-template synthesis of functional microparticles [J]. CIESC Journal, 2022, 73(6): 2306-2317. |
| [5] | Zhihao WANG, Xin SONG, Yaran YIN, Xianming ZHANG. Regulation of gelation rate on the morphology of helical fibers during microfluidic spinning [J]. CIESC Journal, 2022, 73(11): 5158-5166. |
| [6] | Wei ZHAN, Xiyang LIU, Chunying ZHU, Youguang MA, Taotao FU. Study on the flow patterns and transition mechanism of the liquid-liquid two-phase flow in a step-emulsification microdevice with parallel microchannels [J]. CIESC Journal, 2022, 73(1): 184-193. |
| [7] | Yingjie FEI, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Breakup dynamics of bubbles stabilized by nanoparticles with permanent obstruction in a microfluidic Y-junction [J]. CIESC Journal, 2022, 73(1): 213-221. |
| [8] | Wenjun MA, Zhuo CHEN, Sida LING, Jingwei ZHANG, Jianhong XU. Fast and controllable preparation of core-shell microfibers by 3D printing microfluidic device [J]. CIESC Journal, 2022, 73(1): 434-440. |
| [9] | WANG Changliang, TIAN Maocheng. Experimental research on low Reynolds number liquid-liquid two-phase flow and heat transfer characteristics in micro channels [J]. CIESC Journal, 2021, 72(3): 1322-1332. |
| [10] | MA Zhengdong, WEI Meixiu, LU Qilin, DILIYAER?Hamiti , CHEN Xiao. Research on demulsification of O/W emulsion by spiral plate microchannel with ultra-large aspect ratio [J]. CIESC Journal, 2021, 72(3): 1392-1399. |
| [11] | CHEN Zhen, LIU Jing, ZHU Chunying, FU Taotao, MA Youguang. Formation and size prediction of bubble in slurry system in T-junction microchannel [J]. CIESC Journal, 2021, 72(2): 928-936. |
| [12] | LIU Langyu, ZHU Chunying, MA Youguang, FU Taotao. Progress on surfactant and interfacial transport phenomena in microchannels [J]. CIESC Journal, 2021, 72(2): 783-798. |
| [13] | CAO Jianing, GAO Xiang, LUO Yingwu, SU Rongxin. Study on preparation and performance of aqueous binder for lithium iron phosphate electrodes in lithium-ion battery [J]. CIESC Journal, 2021, 72(2): 1169-1180. |
| [14] | Chuanfu DENG,Wei WANG,Rui XIE,Xiaojie JU,Zhuang LIU,Liangyin CHU. Recent progress in scale-up integration of microfluidic droplet generators [J]. CIESC Journal, 2021, 72(12): 5965-5974. |
| [15] | Zhigang LIU,Kaiming DONG,Mingming LYU,Can JI,Yake JIANG. Study on characteristics of flow field in micro pin fin array based on Micro-PIV [J]. CIESC Journal, 2021, 72(10): 5094-5101. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||