1 |
Zhu J, Ge Z, Song Z, et al. Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data[J]. Annual Reviews in Control, 2018, 46: 107-133.
|
2 |
朱群雄, 耿志强, 徐圆, 等. 数据和知识融合驱动的智能过程系统工程研究进展[J]. 北京化工大学学报(自然科学版), 2018, 45(5): 143-152.
|
|
Zhu Q X, Geng Z Q, Xu Y, et al. Progress in intelligent process system engineering driven by data and knowledge fusion[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2018, 45(5): 143-152.
|
3 |
Zhu Q X, Zhang X H, He Y L. Novel virtual sample generation based on locally linear embedding for optimizing the small sample problem: case of soft sensor applications[J]. Industrial & Engineering Chemistry Research, 2020, 59(40): 17977-17986.
|
4 |
Zhu Q X, Chen Z S, Zhang X H, et al. Dealing with small sample size problems in process industry using virtual sample generation: a Kriging-based approach[J]. Soft Computing, 2020, 24(9): 6889-6902.
|
5 |
乔俊飞, 郭子豪, 汤健. 基于改进大趋势扩散和隐含层插值的虚拟样本生成方法及应用[J]. 化工学报, 2020, 71(12): 5681-5695.
|
|
Qiao J F, Guo Z H, Tang J. Virtual sample generation method based on improved megatrend diffusion and hidden layer interpolation with its application[J]. CIESC Journal, 2020, 71(12): 5681-5695.
|
6 |
Zhu Q X, Gong H F, Xu Y, et al. A bootstrap based virtual sample generation method for improving the accuracy of modeling complex chemical processes using small datasets[C]// 6th Data Driven Control and Learning Systems Conference. Chongqing, China, 2017.
|
7 |
Coqueret G. Approximate NORTA simulations for virtual sample generation[J]. Expert Systems with Applications, 2017, 73: 69-81.
|
8 |
Li D C, Wu C S, Tsai T I, et al. Using mega-trend-diffusion and artificial samples in small data set learning for early flexible manufacturing system scheduling knowledge[J]. Computers & Operations Research, 2007, 34(4): 966-982.
|
9 |
朱宝, 陈忠圣, 余乐安. 一种新颖的小样本整体趋势扩散技术[J]. 化工学报, 2016, 67(3): 820-826.
|
|
Zhu B, Chen Z S, Yu L A. A novel mega-trend-diffusion for small sample[J]. CIESC Journal, 2016, 67(3): 820-826.
|
10 |
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. arXiv, 2014, arXiv: 1406.2661 [stat.ML]. .
|
11 |
Kingma D P, Welling M. Auto-encoding variational bayes[J]. arXiv, 2013, arXiv: 1312.6114 [stat.ML]. .
|
12 |
Salimans T, Goodfellow I, Zaremba W, et al. Improved techniques for training GANs[J]. arXiv, 2016, arXiv: 1606.03498 [cs.LG]. .
|
13 |
Mirza M, Osindero S. Conditional generative adversarial nets[J]. arXiv, 2014, arXiv: 1411.1784 [cs.LG]. .
|
14 |
Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv, 2016, arXiv: 1511.06434 [cs.LG]. .
|
15 |
Arjovsky M, Chintala S, Bottou L. Wasserstein GAN[J]. arXiv, 2017, arXiv: 1701.07875 [stat.ML]. .
|
16 |
Zhu J, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[J]. arXiv, 2017, arXiv: 1703.10593 [cs.CV]. .
|
17 |
Donahue J, Krähenbühl P, Darrell T. Adversarial feature learning[J]. arXiv, 2016, arXiv: 1605.09782 [cs.LG]. .
|
18 |
Rezagholiradeh M, Haidar M A. Reg-Gan: semi-supervised learning based on generative adversarial networks for regression [C]// International Conference on Acoustics, Speech and Signal Processing. Calgary, Canada, 2018.
|
19 |
庞昊, 高金峰, 杜耀恒. 基于时间卷积网络分位数回归的短期负荷概率密度预测方法[J]. 电网技术, 2020, 44(4): 1343-1350.
|
|
Pang H, Gao J F, Du Y H. A short-term load probability density prediction based on quantile regression of time convolution network[J]. Power System Technology, 2020, 44(4): 1343-1350.
|
20 |
Taylor J W. A quantile regression approach to estimating the distribution of multiperiod returns[J]. The Journal of Derivatives, 1999, 7(1): 64-78.
|
21 |
Boget Y. Adversarial regression. Generative adversarial networks for non-linear regression: theory and assessment[D]. Switzerland: University of Neuchâtel, 2019.
|
22 |
朱群雄, 张晓晗, 顾祥柏, 等. 基于特征提取的函数连接神经网络研究及其化工过程建模应用[J]. 化工学报, 2018, 69(3): 907-912.
|
|
Zhu Q X, Zhang X H, Gu X B, et al. Research and application of feature extraction derived functional link neural network[J]. CIESC Journal, 2018, 69(3): 907-912.
|