To study the influence mechanism of methane dissolution on the intermolecular interaction between crude oil molecules. The lowest energy configurations of n-heptane and n-heptane, wax, colloid, asphaltene were constructed by molecular dynamics method, and the effect of CH4 atmosphere on the interaction between crude oil molecules was analyzed. Based on the molecular dynamics simulation of CH4 / crude oil molecular system model, the effect of CH4 dissolution on the viscosity of crude oil molecular system was investigated. Five parameters, including intermolecular interaction, radial distribution function, volume strain, self diffusion coefficient, and cohesive energy density, were used to reveal the influence mechanism of intermolecular interaction of crude oil by CH4 dissolution. The results showed that the dissolved CH4 in crude oil molecular system increased the distance between the crude oil molecules, weakened the van der Waals effects between crude oil molecules. Under this condition, volume expansion provided more space for the thermal movement of crude oil molecules, intensified the thermal movement of crude oil molecules and then enhanced the flow capacity of crude oil. Moreover, there were similar rules of the effect of dissolved CH4 on viscosity, radial distribution function, volume strain, self-diffusion coefficient and cohesion energy density in different crude oil molecular system. However, the existence of wax, colloid and asphaltene in crude oil molecular system does not change the influence mechanism of CH4 on the intermolecular interaction of crude oil.