CIESC Journal ›› 2021, Vol. 72 ›› Issue (10): 5150-5158.DOI: 10.11949/0438-1157.20210519
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Gang WANG(),Xuezhi DUAN(),Weikang YUAN,Xinggui ZHOU
Received:
2021-04-15
Revised:
2021-06-30
Online:
2021-10-05
Published:
2021-10-05
Contact:
Xuezhi DUAN
通讯作者:
段学志
作者简介:
王刚(1992—),男,博士研究生,基金资助:
CLC Number:
Gang WANG,Xuezhi DUAN,Weikang YUAN,Xinggui ZHOU. Mechanistic insights into catalytic isomerization of propylene oxide over TS-1[J]. CIESC Journal, 2021, 72(10): 5150-5158.
王刚,段学志,袁渭康,周兴贵. 钛硅分子筛TS-1催化环氧丙烷异构反应的机理探究[J]. 化工学报, 2021, 72(10): 5150-5158.
Add to citation manager EndNote|Ris|BibTeX
键类型 | Ti—O键键长 /nm | |
---|---|---|
计算值 | 实验值 | |
Ti—O(1) | 0.181 | |
Ti—O(2) | 0.176 | |
Ti—O(3) | 0.182 | |
Ti—O(4) | 0.175 | |
平均值 | 0.179 | 0.1793±0.0007[ |
Table 1 Comparison of Ti—O bond lengths between calculated and experimental values
键类型 | Ti—O键键长 /nm | |
---|---|---|
计算值 | 实验值 | |
Ti—O(1) | 0.181 | |
Ti—O(2) | 0.176 | |
Ti—O(3) | 0.182 | |
Ti—O(4) | 0.175 | |
平均值 | 0.179 | 0.1793±0.0007[ |
样品 | 处理温度/℃ | SBET/ (m2?g-1) | Vmicro/ (cm3?g-1) | Vtotal/ (cm3?g-1) |
---|---|---|---|---|
TS-1-B-100 | 100 | 39 | 0.01 | 0.02 |
TS-1-O-550 | 550 | 475 | 0.21 | 0.25 |
Table 2 BET surface area and pore parameters of TS-1-B and TS-1-O
样品 | 处理温度/℃ | SBET/ (m2?g-1) | Vmicro/ (cm3?g-1) | Vtotal/ (cm3?g-1) |
---|---|---|---|---|
TS-1-B-100 | 100 | 39 | 0.01 | 0.02 |
TS-1-O-550 | 550 | 475 | 0.21 | 0.25 |
1 | Nijhuis T A, Makkee M, Moulijn J A, et al. The production of propene oxide: catalytic processes and recent developments[J]. Industrial & Engineering Chemistry Research, 2006, 45(10): 3447-3459. |
2 | Teržan J, Huš M, Likozar B, et al. Propylene epoxidation using molecular oxygen over copper- and silver-based catalysts: a review[J]. ACS Catalysis, 2020, 10(22): 13415-13436. |
3 | Hayashi T, Tanaka K, Haruta M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen[J]. Journal of Catalysis, 1998, 178(2): 566-575. |
4 | 宋钊宁, 冯翔, 刘熠斌, 等. 丙烯直接气相临氢环氧化催化剂结构调控和催化剂构-效关系研究进展[J]. 化学进展, 2016, 28(12): 1762-1773. |
Song Z N, Feng X, Liu Y B, et al. Advances in manipulation of catalyst structure and relationship of Structure-Performance for Direct Propene Epoxidation with H2 and O2[J]. Progress in Chemistry, 2016, 28(12): 1762-1773. | |
5 | Sinha A K, Seelan S, Tsubota S, et al. A three-dimensional mesoporous titanosilicate support for gold nanoparticles: vapor-phase epoxidation of propene with high conversion[J]. Angewandte Chemie International Edition, 2004, 43(12): 1546-1548. |
6 | Chowdhury B, Bravo-Suárez J J, Daté M, et al. Trimethylamine as a gas-phase promoter: highly efficient epoxidation of propylene over supported gold catalysts[J]. Angewandte Chemie International Edition, 2006, 45(3): 412-415. |
7 | 杜威, 张志华, 段学志, 等. 丙烯氢氧环氧化动力学与反应器概念设计研究进展[J]. 化工学报, 2021, 72(1): 116-131. |
Du W, Zhang Z H, Duan X Zet al. A review on kinetics and reactor concept design of propylene epoxidation using H2 and O2[J]. 2021, 72(1): 116-131. | |
8 | Zhan G W, Du M M, Sun D H, et al. Vapor-phase propylene epoxidation with H2/O2 over bioreduction Au/TS-1 catalysts: synthesis, characterization, and optimization[J]. Industrial & Engineering Chemistry Research, 2011, 50(15): 9019-9026. |
9 | Lee W S, Cem Akatay M, Stach E A, et al. Reproducible preparation of Au/TS-1 with high reaction rate for gas phase epoxidation of propylene[J]. Journal of Catalysis, 2012, 287: 178-189. |
10 | Lu J Q, Li N, Pan X R, et al. Direct propylene epoxidation with H2 and O2 over In modified Au/TS-1 catalysts[J]. Catalysis Communications, 2012, 28: 179-182. |
11 | Lee W S, Cem Akatay M, Stach E A, et al. Enhanced reaction rate for gas-phase epoxidation of propylene using H2 and O2 by Cs promotion of Au/TS-1[J]. Journal of Catalysis, 2013, 308: 98-113. |
12 | Lu J Q, Zhang X M, Bravo-Suárez J J, et al. Effect of composition and promoters in Au/TS-1 catalysts for direct propylene epoxidation using H2 and O2[J]. Catalysis Today, 2009, 147(3/4): 186-195. |
13 | Feng X, Duan X Z, Qian G, et al. Au nanoparticles deposited on the external surfaces of TS-1: enhanced stability and activity for direct propylene epoxidation with H2 and O2[J]. Applied Catalysis B: Environmental, 2014, 150/151: 396-401. |
14 | Feng X, Duan X Z, Yang J, et al. Au/uncalcined TS-1 catalysts for direct propene epoxidation with H2 and O2: effects of Si/Ti molar ratio and Au loading[J]. Chemical Engineering Journal, 2015, 278: 234-239. |
15 | Wang G, Cao Y Q, Zhang Z H, et al. Surface engineering and kinetics behaviors of Au/uncalcined TS-1 catalysts for propylene epoxidation with H2 and O2[J]. Industrial & Engineering Chemistry Research, 2019, 58:17300-17307. |
16 | Lee W S, Cem Akatay M, Stach E A, et al. Gas-phase epoxidation of propylene in the presence of H2 and O2 over small gold ensembles in uncalcined TS-1[J]. Journal of Catalysis, 2014, 313: 104-112. |
17 | Stangland E E, Stavens K B, Andres R P, et al. Characterization of gold-titania catalysts via oxidation of propylene to propylene oxide[J]. Journal of Catalysis, 2000, 191(2): 332-347. |
18 | Sinha A K, Seelan S, Akita T, et al. Vapor phase propylene epoxidation over Au/Ti-MCM-41 catalysts prepared by different Ti incorporation modes[J]. Applied Catalysis A: General, 2003, 240(1/2): 243-252. |
19 | Mul G, Zwijnenburg A, van der Linden B, et al. Stability and selectivity of Au/TiO2 and Au/TiO2/SiO2 catalysts in propene epoxidation: an in situ FT-IR study[J]. Journal of Catalysis, 2001, 201(1): 128-137. |
20 | Namuangruk S, Khongpracha P, Pantu P, et al. Structures and reaction mechanisms of propene oxide isomerization on H-ZSM-5: an ONIOM study[J]. The Journal of Physical Chemistry B, 2006, 110(51): 25950-25957. |
21 | Wells D H, Delgass W N, Thomson K T. Evidence of defect-promoted reactivity for epoxidation of propylene in titanosilicate (TS-1) catalysts: a DFT study[J]. Journal of the American Chemical Society, 2004, 126(9): 2956-2962. |
22 | Li M Z, Yan X Y, Zhu M Y, et al. Insight into the stereoselectivity of TS-1 in epoxidation of cis/trans-2-hexene: a computational study[J]. Catalysis Science & Technology, 2018, 8(19): 4975-4984. |
23 | Wells D H, Joshi A M, Delgass W N, et al. A quantum chemical study of comparison of various propylene epoxidation mechanisms using H2O2 and TS-1 catalyst[J]. The Journal of Physical Chemistry. B, 2006, 110(30): 14627-14639. |
24 | Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory[J]. Journal of Computational Chemistry, 2011, 32(7): 1456-1465. |
25 | Li M Z, Wang Y C, Wu Y, et al. Structure and catalytic activity of a newly proposed titanium species in a Ti-YNU-1 zeolite: a density functional theory study[J]. Catalysis Science & Technology, 2017, 7(18): 4105-4114. |
26 | Panyaburapa W, Nanok T, Limtrakul J. Epoxidation reaction of unsaturated hydrocarbons with H2O2 over defect TS-1 investigated by ONIOM method: formation of active sites and reaction mechanisms[J]. The Journal of Physical Chemistry C, 2007, 111(8): 3433-3441. |
27 | Lamberti C, Bordiga S, Arduino D, et al. Evidence of the presence of two different framework Ti(Ⅳ) species in Ti-Silicalite-1 in vacuo conditions: an EXAFS and a photoluminescence study[J]. The Journal of Physical Chemistry B, 1998, 102(33): 6382-6390. |
28 | Deng X J, Wang Y N, Shen L, et al. Low-cost synthesis of titanium silicalite-1 (TS-1) with highly catalytic oxidation performance through a controlled hydrolysis process[J]. Industrial & Engineering Chemistry Research, 2013, 52(3): 1190-1196. |
29 | Zuo Y, Wang X S, Guo X W. Synthesis of titanium silicalite-1 with small crystal size by using mother liquor of titanium silicalite-1 as seeds (Ⅱ): Influence of synthesis conditions on properties of titanium silicalite-1[J]. Microporous and Mesoporous Materials, 2012, 162: 105-114. |
30 | Elango M, Maciel G S, Palazzetti F, et al. Quantum chemistry of C3H6O molecules: structure and stability, isomerization pathways, and chirality changing mechanisms[J]. The Journal of Physical Chemistry. A, 2010, 114(36): 9864-9874. |
31 | Zwijnenburg A, Makkee M, Moulijn J A. Increasing the low propene epoxidation product yield of gold/titania-based catalysts[J]. Applied Catalysis A: General, 2004, 270(1/2): 49-56. |
32 | Panayotov D, McEntee M, Burrows S, et al. Infrared studies of propene and propene oxide adsorption on nanoparticulate Au/TiO2[J]. Surface Science, 2016, 652: 172-182. |
33 | Harris J W, Arvay J, Mitchell G, et al. Propylene oxide inhibits propylene epoxidation over Au/TS-1[J]. Journal of Catalysis, 2018, 365: 105-114. |
34 | Imanaka T, Okamoto Y, Teranishi S. The isomerization of propylene oxide on zeolite catalysts[J]. Bulletin of the Chemical Society of Japan, 1972, 45(11): 3251-3254. |
35 | Nijhuis T A, Visser T, Weckhuysen B M. Mechanistic study into the direct epoxidation of propene over gold/titania catalysts[J]. The Journal of Physical Chemistry B, 2005, 109(41): 19309-19319. |
36 | Nijhuis T A, Visser T, Weckhuysen B M. The role of gold in gold-titania epoxidation catalysts[J]. Angewandte Chemie International Edition, 2005, 44(7): 1115-1118. |
37 | Ruiz A, van der Linden B, Makkee M, et al. Acrylate and propoxy-groups: contributors to deactivation of Au/TiO2 in the epoxidation of propene[J]. Journal of Catalysis, 2009, 266(2): 286-290. |
38 | Yao S N, Xu L H, Wang J, et al. Activity and stability of titanosilicate supported Au catalyst for propylene epoxidation with H2 and O2[J]. Molecular Catalysis, 2018, 448: 144-152. |
39 | Chowdhury B, Bando K K, Bravo-Suárez J J, et al. Activity of silylated titanosilicate supported gold nanoparticles towards direct propylene epoxidation reaction in the presence of trimethylamine[J]. Journal of Molecular Catalysis A: Chemical, 2012, 359: 21-27. |
40 | Kanungo S, Keshri K S, van Hoof A J F, et al. Silylation enhances the performance of Au/Ti-SiO2 catalysts in direct epoxidation of propene using H2 and O2[J]. Journal of Catalysis, 2016, 344: 434-444. |
41 | Kanungo S, Keshri K S, Hensen E J M, et al. Direct epoxidation of propene on silylated Au-Ti catalysts: a study on silylation procedures and the effect on propane formation[J]. Catalysis Science & Technology, 2018, 8(12): 3052-3059. |
[1] | ZHANG Zhihua, DU Wei, DUAN Xuezhi, ZHOU Xinggui. Au nanoparticles immobilized on surface modified TS-1-B as high-efficiency bifunctional catalyst for propylene epoxidation with H2 and O2 [J]. CIESC Journal, 2021, 72(7): 3613-3625. |
[2] | YE Kai, LIU Xianghua, JIANG Yue, YU Ying, ZHAO Yafei, ZHUANG Ye, ZHENG Jinbao, CHEN Binghui. Combing low-temperature plasma with CeO2/13X for toluene degradation [J]. CIESC Journal, 2021, 72(7): 3706-3715. |
[3] | ZHU Qianqian, JIN Haibo, GUO Xiaoyan, HE Guangxiang, MA Lei, ZHANG Rongyue, GU Qingyang, YANG Suohe. Study on synthesis of ε-caprolactone with MgO catalysis by Baeyer-Villiger green oxidation of cyclohexanone in H2O2/acetonitrile system [J]. CIESC Journal, 2021, 72(5): 2638-2646. |
[4] | DU Wei, ZHANG Zhihua, DUAN Xuezhi, ZHOU Xinggui. A review on kinetics and reactor concept design of propylene epoxidation using H2 and O2 [J]. CIESC Journal, 2021, 72(1): 116-131. |
[5] | Dong WANG, Yaru LIU, Zhuo CHEN, Zunli KOU, Yuehong LU. Effects on performance of small water-source heat pump water heater with CO2 by refrigerant charge and determination of optimal value [J]. CIESC Journal, 2020, 71(S1): 397-403. |
[6] | Hong ZHANG, Liu TANG. Study on reaction mechanism of p-type dopant Cp2Mg in MOCVD gas phase [J]. CIESC Journal, 2020, 71(7): 3000-3008. |
[7] | Yan JIN, Qian YANG, Wenbin ZHAO, Baoshan HU. Catalytic reaction system for controllable synthesis of graphene with chemical vapor deposition [J]. CIESC Journal, 2020, 71(6): 2564-2585. |
[8] | Yonggang CHENG, Jiao LIU, Zhennan HAN, Lei SHI, Guangwen XU. Transfer dynamics and reaction control mechanism over methanation catalyst particles in transport bed [J]. CIESC Journal, 2019, 70(8): 2876-2887. |
[9] | Lufeng WANG, Xin QIAN, Lifang DENG, Haoran YUAN. Recent progress on catalysts about electrochemical synthesis of ammonia from nitrogen [J]. CIESC Journal, 2019, 70(8): 2854-2863. |
[10] | Wensheng LIANG, Jiangtao LIU, Yue ZHAO, Wei HUANG, Zhijun ZUO. Theoretical calculation of effect of NiO and Ni catalysts for benzoic acid pyrolysis [J]. CIESC Journal, 2019, 70(4): 1429-1435. |
[11] | Tianshui LIANG, Zongying WANG, Kun GAO, Runwan LI, Zheng WANG, Wei ZHONG, Jun ZHAO. Analysis of fire suppression effectiveness of ultra-fine water mist containing iron compounds additives in cup burner [J]. CIESC Journal, 2019, 70(3): 1236-1242. |
[12] | ZHANG Yi, LI Jianbo, WANG Quanhai, LU Xiaofeng. Simulation of NOx formation in novel dual circulating fluidized-bed boiler [J]. CIESC Journal, 2018, 69(4): 1703-1713. |
[13] | LI Shuyan, SUN Lina, SHEN Shujun, CHENG Tianxing, CHENG Shuanghua, CHEN Jiuxi. Reaction of diaryl disulfides with nitroarenes [J]. CIESC Journal, 2017, 68(6): 2394-2398. |
[14] | ZHANG Hongmei, LIN Feng, REN Mingqi, LI Jinlian, HAO Yulan, WU Hongjun, ZHAO Jingying, ZHAO Liang, HE Yongdian. Free radical models of small molecular alkane pyrolysis [J]. CIESC Journal, 2017, 68(4): 1423-1433. |
[15] | YANG Jia, ZHANG Zhihua, FENG Xiang, DUAN Xuezhi, ZHOU Jinghong, ZHOU Xinggui. Effect of Ag addition on performance of Au/TS-1-B catalyst in gas phase propylene epoxidation [J]. CIESC Journal, 2016, 67(9): 3684-3691. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||