CIESC Journal ›› 2021, Vol. 72 ›› Issue (7): 3706-3715.DOI: 10.11949/0438-1157.20201914
• Catalysis, kinetics and reactors • Previous Articles Next Articles
YE Kai1(),LIU Xianghua2(),JIANG Yue2,YU Ying2,ZHAO Yafei1,ZHUANG Ye1,ZHENG Jinbao2(),CHEN Binghui2
Received:
2020-12-25
Revised:
2021-03-31
Online:
2021-07-05
Published:
2021-07-05
Contact:
ZHENG Jinbao
叶凯1(),刘香华2(),姜月2,于颖2,赵亚飞1,庄烨1,郑进保2(),陈秉辉2
通讯作者:
郑进保
作者简介:
叶凯(1988—),男,硕士,CLC Number:
YE Kai, LIU Xianghua, JIANG Yue, YU Ying, ZHAO Yafei, ZHUANG Ye, ZHENG Jinbao, CHEN Binghui. Combing low-temperature plasma with CeO2/13X for toluene degradation[J]. CIESC Journal, 2021, 72(7): 3706-3715.
叶凯, 刘香华, 姜月, 于颖, 赵亚飞, 庄烨, 郑进保, 陈秉辉. 低温等离子体协同CeO2/13X催化降解甲苯[J]. 化工学报, 2021, 72(7): 3706-3715.
Catalyst | SBET/(m2/g) | Vpore/(cm3/g) | Pore size/nm |
---|---|---|---|
fresh 10%Ce/13X | 379.4 | 0.052 | 5.0 |
used 10%Ce/13X | 313.0 | 0.063 | 4.5 |
fresh 20%Ce/13X | 346.7 | 0.042 | 5.1 |
used 20%Ce/13X | 342.6 | 0.046 | 5.0 |
fresh 30%Ce/13X | 286.1 | 0.035 | 5.0 |
used 30%Ce/13X | 173.9 | 0.032 | 6.5 |
fresh 40%Ce/13X | 200.7 | 0.027 | 4.7 |
used 40%Ce/13X | 179.2 | 0.030 | 5.2 |
Table 1 Textural properties of CeO2-based catalysts
Catalyst | SBET/(m2/g) | Vpore/(cm3/g) | Pore size/nm |
---|---|---|---|
fresh 10%Ce/13X | 379.4 | 0.052 | 5.0 |
used 10%Ce/13X | 313.0 | 0.063 | 4.5 |
fresh 20%Ce/13X | 346.7 | 0.042 | 5.1 |
used 20%Ce/13X | 342.6 | 0.046 | 5.0 |
fresh 30%Ce/13X | 286.1 | 0.035 | 5.0 |
used 30%Ce/13X | 173.9 | 0.032 | 6.5 |
fresh 40%Ce/13X | 200.7 | 0.027 | 4.7 |
used 40%Ce/13X | 179.2 | 0.030 | 5.2 |
Catalysts | CeO2 loading/% | Ce3+/Ce4+ | Ce/ (Si+Al) | Ce3+/ (Si+Al) | Osur/O | Osur/ (Si+Al) |
---|---|---|---|---|---|---|
10%Ce/13X | ||||||
fresh | 13.5 | 0.39 | 2.38 | 0.93 | 0.44 | 1.67 |
used | — | 0.41 | 2.25 | 0.92 | 0.42 | 1.42 |
20%Ce/13X | ||||||
fresh | 20.7 | 0.28 | 2.87 | 0.80 | 0.4 | 2.63 |
used | — | 0.37 | 2.90 | 1.07 | 0.44 | 2.86 |
30%Ce/13X | ||||||
fresh | 27.7 | 0.23 | 6.74 | 1.55 | 0.57 | 4.11 |
used | — | 0.31 | 8.13 | 2.52 | 0.61 | 4.57 |
40%Ce/13X | ||||||
fresh | 35.1 | 0.12 | 10.8 | 1.30 | 0.55 | 3.11 |
used | — | 0.19 | 9.3 | 1.77 | 0.58 | 3.42 |
Table 2 The surface composition of different CeO2-based catalysts
Catalysts | CeO2 loading/% | Ce3+/Ce4+ | Ce/ (Si+Al) | Ce3+/ (Si+Al) | Osur/O | Osur/ (Si+Al) |
---|---|---|---|---|---|---|
10%Ce/13X | ||||||
fresh | 13.5 | 0.39 | 2.38 | 0.93 | 0.44 | 1.67 |
used | — | 0.41 | 2.25 | 0.92 | 0.42 | 1.42 |
20%Ce/13X | ||||||
fresh | 20.7 | 0.28 | 2.87 | 0.80 | 0.4 | 2.63 |
used | — | 0.37 | 2.90 | 1.07 | 0.44 | 2.86 |
30%Ce/13X | ||||||
fresh | 27.7 | 0.23 | 6.74 | 1.55 | 0.57 | 4.11 |
used | — | 0.31 | 8.13 | 2.52 | 0.61 | 4.57 |
40%Ce/13X | ||||||
fresh | 35.1 | 0.12 | 10.8 | 1.30 | 0.55 | 3.11 |
used | — | 0.19 | 9.3 | 1.77 | 0.58 | 3.42 |
1 | 梁文俊, 郭书清, 武红梅, 等. 非热等离子体协同Mn-Ce/La/γ-Al2O3催化剂去除甲苯[J]. 化工学报, 2017, 68(7): 2755-2762. |
Liang W J, Guo S Q, Wu H M, et al. Removal of toluene using non-thermal plasma coupled with Mn-Ce/La/γ-Al2O3 catalysts[J]. CIESC Journal, 2017, 68(7): 2755-2762. | |
2 | 尚超, 韦献革, 白敏冬, 等. 低温等离子体催化降解烟气中甲苯的研究[J]. 中国环境科学, 2020, 40(9): 3714-3720. |
Shang C, Wei X G, Bai M D, et al. Degradation of toluene in flue gas by low temperature plasma catalysis[J]. China Environmental Science, 2020, 40(9): 3714-3720. | |
3 | 梁文俊, 孙慧频, 朱玉雪, 等. 流向变换等离子体催化系统去除甲苯[J]. 中国环境科学, 2019, 39(12): 4974-4981. |
Liang W J, Sun H P, Zhu Y X, et al. Removal of toluene with a reverse flow non-thermal plasma-catalytic reaction system[J]. China Environmental Science, 2019, 39(12): 4974-4981. | |
4 | Fan H Y, Shi C, Li X S, et al. High-efficiency plasma catalytic removal of dilute benzene from air[J]. Journal of Physics D: Applied Physics, 2009, 42(22): 225105. |
5 | 刘文正, 赵帅, 柴茂林, 等. 采用辉光放电等离子体的烟气处理技术研究[J]. 中国环境科学, 2017, 37(8): 2905-2914. |
Liu W Z, Zhao S, Chai M L, et al. Technology of flue gas treatment with glow discharge plasma[J]. China Environmental Science, 2017, 37(8): 2905-2914. | |
6 | 竹涛, 梁文俊, 李坚, 等. 等离子体联合纳米技术降解甲苯废气的研究[J]. 中国环境科学, 2008, 28(8): 699-703. |
Zhu T, Liang W J, Li J, et al. Degradation of toluene in exhaust gas with plasma and nano-materials[J]. China Environmental Science, 2008, 28(8): 699-703. | |
7 | 赵军杰, 党小庆, 秦彩虹, 等. 分子筛吸附: 低温等离子体氧化去除甲苯[J]. 环境污染与防治, 2018, 40(5): 562-565. |
Zhao J J, Dang X Q, Qin C H, et al. Removal of toluene by molecular sieve adsorption-nonthermal plasma oxidation[J]. Environmental Pollution & Control, 2018, 40(5): 562-565. | |
8 | Youn J S, Bae J, Park S, et al. Plasma-assisted oxidation of toluene over Fe/zeolite catalyst in DBD reactor using adsorption/desorption system[J]. Catalysis Communications, 2018, 113: 36-40. |
9 | 滕晶晶, 党小庆, 秦彩虹, 等. Mn-Ag/13X的焙烧温度对等离子体催化氧化吸附态甲苯的影响[J]. 环境工程学报, 2017, 11(6): 3666-3670. |
Teng J J, Dang X Q, Qin C H, et al. Effect of calcination temperature on Mn-Ag/13X for plasma catalytic oxidation of adsorbed toluene[J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3666-3670. | |
10 | Kim H H, Teramoto Y, Negishi N, et al. A mul- tidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: a review[J]. Catalysis Today, 2015, 256: 13-22. |
11 | 康忠利, 党小庆, 秦彩虹, 等. 锰银复合催化剂对NTP降解吸附态甲苯的影响[J]. 环境工程, 2017, 35(2): 72-77, 99. |
Kang Z L, Dang X Q, Qin C H, et al. Influence of manganese-silver catalyst on adsorbed toluene decomposition with non-thermal plasma[J]. Environmental Engineering, 2017, 35(2): 72-77, 99. | |
12 | Yi H H, Yang X, Tang X L, et al. Removal of toluene from industrial gas over 13X zeolite supported catalysts by adsorption-plasma catalytic process[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(9): 2276-2286. |
13 | Yi H H, Yang X, Tang X L, et al. Performance and pathways of toluene degradation over Co/13X by different processes based on nonthermal plasma[J]. Energy & Fuels, 2017, 31(10): 11217-11224. |
14 | Trinh Q H, Gandhi M S, Mok Y S. Adsorption and plasma-catalytic oxidation of acetone over zeolite-supported silver catalyst[J]. Japanese Journal of Applied Physics, 2015, 54(1S): 01AG04. |
15 | Lu M J, Huang R, Wu J L, et al. On the performance and mechanisms of toluene removal by FeOx/SBA-15-assisted non-thermal plasma at atmospheric pressure and room temperature[J]. Catalysis Today, 2015, 242: 274-286. |
16 | Okumura K, Kobayashi T, Tanaka H, et al. Toluene combustion over palladium supported on various metal oxide supports[J]. Applied Catalysis B: Environmental, 2003, 44(4): 325-331. |
17 | Ordóñez S, Bello L, Sastre H, et al. Kinetics of the deep oxidation of benzene, toluene, n-hexane and their binary mixtures over a platinum on γ-alumina catalyst[J]. Applied Catalysis B: Environmental, 2002, 38(2): 139-149. |
18 | 樊国栋, 王丽娜. 热处理温度对Ce掺杂TiO2光催化剂结构与性能的影响[J]. 陕西科技大学学报(自然科学版), 2015, 33(5): 46-49, 75. |
Fan G D, Wang L N. Annealing temperature on the influence of the structure and photocatalytic performance of Ce doped TiO2[J]. Journal of Shaanxi University of Science & Technology (Natural Science Edition), 2015, 33(5): 46-49, 75. | |
19 | Lawrence N J, Brewer J R, Wang L, et al. De- fect engineering in cubic cerium oxide nanostructures for catalytic oxidation[J]. Nano Letters, 2011, 11(7): 2666-2671. |
20 | Wu Z L, Mann A K P, Li M J, et al. Spectro- scopic investigation of surface-dependent acid–base property of ceria nanoshapes[J]. The Journal of Physical Chemistry C, 2015, 119(13): 7340-7350. |
21 | Liu X, Zhou K, Wang L, et al. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods[J]. Journal of the American Chemical Society, 2009, 131(9): 3140-3141. |
22 | Jiang L Y, Nie G F, Zhu R Y, et al. Efficient degradation of chlorobenzene in a non-thermal plasma catalytic reactor supported on CeO2/HZSM-5 catalysts[J]. Journal of Environmental Sciences, 2017, 55: 266-273. |
23 | Asgari N, Haghighi M, Shafiei S. Synthesis and physicochemical characterization of nanostructured CeO2/clinoptilolite for catalytic total oxidation of xylene at low temperature[J]. Environmental Progress & Sustainable Energy, 2013, 32(3): 587-597. |
24 | Abbasi Z, Haghighi M, Fatehifar E, et al. Syn- thesis and physicochemical characterizations of nanostructured Pt/Al2O3-CeO2 catalysts for total oxidation of VOCs[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1445-1454. |
25 | Tang X L, Gao F Y, Wang J G, et al. Comparative study between single- and double-dielectric barrier discharge reactor for nitric oxide removal[J]. Industrial & Engineering Chemistry Research, 2014, 53(14): 6197-6203. |
26 | 于欣, 党小庆, 李世杰, 等. 单介质和双介质阻挡放电低温等离子体降解甲苯的比较[J]. 环境工程学报, 2020, 14(4): 1033-1041. |
Yu X, Dang X Q, Li S J, et al. Comparison of single and double dielectric barrier discharge non-thermal plasma for toluene removal[J]. Chinese Journal of Environmental Engineering, 2020, 14(4): 1033-1041. | |
27 | Kim H H, Kim J H, Ogata A. Microscopic observation of discharge plasma on the surface of zeolites supported metal nanoparticles[J]. Journal of Physics D: Applied Physics, 2009, 42(13): 135210. |
28 | Yao X M, Jiang N, Li J, et al. An improved corona discharge ignited by oxide cathodes with high secondary electron emission for toluene degradation[J]. Chemical Engineering Journal, 2019, 362: 339-348. |
29 | Xiao G, Xu W P, Wu R B, et al. Non-thermal plasmas for VOCs abatement[J]. Plasma Chemistry and Plasma Processing, 2014, 34(5): 1033-1065. |
30 | Zhang Z P, Chen L Q, Li Z B, et al. Activity and SO2 resistance of amorphous CeaTiOx catalysts for the selective catalytic reduction of NO with NH3: in situ DRIFT studies[J]. Catalysis Science & Technology, 2016, 6(19): 7151-7162. |
31 | Li Y Z, Sun Q, Kong M, et al. Coupling oxy- gen ion conduction to photocatalysis in mesoporous nanorod-like ceria significantly improves photocatalytic efficiency[J]. The Journal of Physical Chemistry C, 2011, 115(29): 14050-14057. |
32 | Zhang S, Guo Y Y, Li X Y, et al. Effects of cerium doping position on physicochemical properties and catalytic performance in methanol total oxidation[J]. Journal of Rare Earths, 2018, 36(8): 811-818. |
33 | Li J J, Yu E Q, Cai S C, et al. Noble metal free, CeO2/LaMnO3 hybrid achieving efficient photo-thermal catalytic decomposition of volatile organic compounds under IR light[J]. Applied Catalysis B: Environmental, 2019, 240: 141-152. |
34 | Trovarelli A. Structural properties and non- stoichiometric behavior of CeO2[M]//Catalysis by Ceria and Related Materials. London: Imperial College Press, 2002: 15-50. |
35 | Wang B F, Chen B X, Sun Y H, et al. Effects of dielectric barrier discharge plasma on the catalytic activity of Pt/CeO2 catalysts[J]. Applied Catalysis B: Environmental, 2018, 238: 328-338. |
36 | Liu C J, Yu K L, Zhang Y P, et al. Characterization of plasma treated Pd/HZSM-5 catalyst for methane combustion[J]. Applied Catalysis B: Environmental, 2004, 47(2): 95-100. |
37 | Chen L, Zhang X W, Huang L, et al. Application of in-plasma catalysis and post-plasma catalysis for methane partial oxidation to methanol over a Fe2O3-CuO/γ-Al2O3 catalyst[J]. Journal of Natural Gas Chemistry, 2010, 19(6): 628-637. |
38 | Huang H B, Ye D Q, Leung D Y C, et al. By products and pathways of toluene destruction via plasma-catalysis[J]. Journal of Molecular Catalysis A: Chemical, 2011, 336(1/2): 87-93. |
39 | Li S J, Dang X Q, Yu X, et al. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: a review[J]. Chemical Engineering Journal, 2020, 388: 124275. |
40 | Feng X X, Liu H X, He C, et al. Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: a review[J]. Catalysis Science & Technology, 2018, 8(4): 936-954. |
[1] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[2] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[3] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[4] | Jian JIAN, Jiaming ZHANG, Xiang SHE, Hu ZHOU, Kuiyi YOU, Hean LUO. Correlation with the redox V4+/V5+ ratio in VPO catalysts for oxidation of cyclohexane by NO2 [J]. CIESC Journal, 2023, 74(4): 1570-1577. |
[5] | SUN Jing, DONG Yilin, LI Faqi, LI Wenxiang, MA Xiaoling, WANG Wenlong. Study on adsorption and catalytic oxidation characteristics of toluene on Co3O4 modified USY molecular sieve [J]. CIESC Journal, 2021, 72(6): 3306-3315. |
[6] | ZHU Qianqian, JIN Haibo, GUO Xiaoyan, HE Guangxiang, MA Lei, ZHANG Rongyue, GU Qingyang, YANG Suohe. Study on synthesis of ε-caprolactone with MgO catalysis by Baeyer-Villiger green oxidation of cyclohexanone in H2O2/acetonitrile system [J]. CIESC Journal, 2021, 72(5): 2638-2646. |
[7] | YE Zhiping, ZHOU Danfei, LIU Zifeng, ZHOU Qingqing, WANG Jiade. Electro-oxidation information of p-toluene sulfonic acid on Ti/PbO2 electrode [J]. CIESC Journal, 2021, 72(5): 2810-2816. |
[8] | Gang WANG,Xuezhi DUAN,Weikang YUAN,Xinggui ZHOU. Mechanistic insights into catalytic isomerization of propylene oxide over TS-1 [J]. CIESC Journal, 2021, 72(10): 5150-5158. |
[9] | Wenjun LIANG, Yuxue ZHU, Xiujuan SHI, Huipin SUN, Sida REN. Effect of Ce doping on catalytic chlorobenzene performance of Ru/TiO2 catalysts [J]. CIESC Journal, 2020, 71(8): 3585-3593. |
[10] | Hong ZHANG, Liu TANG. Study on reaction mechanism of p-type dopant Cp2Mg in MOCVD gas phase [J]. CIESC Journal, 2020, 71(7): 3000-3008. |
[11] | Yan JIN, Qian YANG, Wenbin ZHAO, Baoshan HU. Catalytic reaction system for controllable synthesis of graphene with chemical vapor deposition [J]. CIESC Journal, 2020, 71(6): 2564-2585. |
[12] | Wenqiang GAO, Weizhou JIAO, Youzhi LIU. Oxidation of toluene to benzoic acid by O3/H2O2 process enhanced usinghigh-gravity technology [J]. CIESC Journal, 2020, 71(3): 1045-1052. |
[13] | Changyuan TAO, Xiuxiu WANG, Zuohua LIU, Renlong LIU, Jinhua LUAN. Research on leaching rate enhancement and organic matter removal in wet-process phosphoric acid [J]. CIESC Journal, 2020, 71(10): 4792-4799. |
[14] | Jun an GAO, Wei WANG, Jie ZHANG, Zhigang LEI, Dongjun SHI, Lingduo QU. Study on synthesis and adsorption performance of hydrophobic ZSM-5 zeolites for removal of toluene in high-humidity exhaust gas [J]. CIESC Journal, 2020, 71(1): 337-343. |
[15] | Chenchen ZHAO, Qinglan HAO, Ningna YAN, Deyu YANG, Yafei HUANG, Baojuan DOU. Study on lean-combustion limit of toluene self-sustained combustion on Cu-Ce-Zr based catalysts [J]. CIESC Journal, 2019, 70(8): 3050-3057. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 298
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 382
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||