CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 2933-2943.DOI: 10.11949/0438-1157.20220033
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Luyue HUANG1(),Chang LIU1,Yongyi XU2,Haoruo XING1,Feng WANG2,Shuangchen MA1()
Received:
2022-01-07
Revised:
2022-05-18
Online:
2022-08-01
Published:
2022-07-05
Contact:
Shuangchen MA
黄陆月1(),刘畅1,许勇毅2,邢浩若1,王峰2,马双忱1()
通讯作者:
马双忱
作者简介:
黄陆月(1997—),女,硕士研究生,基金资助:
CLC Number:
Luyue HUANG, Chang LIU, Yongyi XU, Haoruo XING, Feng WANG, Shuangchen MA. Development of CDI two-dimensional concentration mass transfer model and experimental validation[J]. CIESC Journal, 2022, 73(7): 2933-2943.
黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943.
Add to citation manager EndNote|Ris|BibTeX
名称 | 模型 | 优点 | 缺点 |
---|---|---|---|
Biesheuvel等的模型 | 一维 | 理论模型的预测与离子去除步骤的实验结果一致性很高 | 离子解吸步骤的实验结果与模型不吻合,说明模型存在缺陷 |
Suss等的模型 | 一维 | 能预测随着时间的推移,浓度和电位在电极间隙和电极上的变化 | 不适合用于预测确切的电池性能;忽略了表面传导和电渗流的影响 |
Perez等的传质模型 | 一维 | 很好地预测了低流速和高流速下溶液的脱盐率 | 只适用于低浓度的溶液;使用了Nernst层近似 |
Hemmatifar等的模型 | 二维 | 模型结果与实验数据一致性较好;模型是充分模块化的 | 假设恒定的微孔电容不够精确;忽略了系统是动态变化的 |
Table 1 Comparison of pros and cons of CDI mass transfer model
名称 | 模型 | 优点 | 缺点 |
---|---|---|---|
Biesheuvel等的模型 | 一维 | 理论模型的预测与离子去除步骤的实验结果一致性很高 | 离子解吸步骤的实验结果与模型不吻合,说明模型存在缺陷 |
Suss等的模型 | 一维 | 能预测随着时间的推移,浓度和电位在电极间隙和电极上的变化 | 不适合用于预测确切的电池性能;忽略了表面传导和电渗流的影响 |
Perez等的传质模型 | 一维 | 很好地预测了低流速和高流速下溶液的脱盐率 | 只适用于低浓度的溶液;使用了Nernst层近似 |
Hemmatifar等的模型 | 二维 | 模型结果与实验数据一致性较好;模型是充分模块化的 | 假设恒定的微孔电容不够精确;忽略了系统是动态变化的 |
R/Pa | T/K | d/m | z | F | D/(m2/s) | E/V | t1 | t2 | |
---|---|---|---|---|---|---|---|---|---|
8.314 | 298 | 0.005 | 1 | 96500 | 1.48×10-9 | 1.2 | 0.623 | 0.97 | 100 |
Table 2 The parameters setting in 2D mass transfer model
R/Pa | T/K | d/m | z | F | D/(m2/s) | E/V | t1 | t2 | |
---|---|---|---|---|---|---|---|---|---|
8.314 | 298 | 0.005 | 1 | 96500 | 1.48×10-9 | 1.2 | 0.623 | 0.97 | 100 |
1 | 马双忱, 刘畅, 马岚, 等. 电吸附用于微污染水处理:技术选择、工艺原理、未来发展[J]. 化工进展, 2020, 39(7): 2841-2849. |
Ma S C, Liu C, Ma L, et al. Electro-adsorption for micro-polluted water treatment: technology selection, process principle, future development[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2841-2849. | |
2 | Chen R, Sheehan T, Ng J L, et al. Capacitive deionization and electrosorption for heavy metal removal[J]. Environmental Science: Water Research & Technology, 2020, 6(2): 258-282. |
3 | Liang P, Ren Z J, Huang X. Capacitive deionization and electrosorption: from desalination to ion management[J]. Environmental Science: Water Research & Technology, 2020, 6(2): 241-242. |
4 | Xing W L, Liang J, Tang W W, et al. Perchlorate removal from brackish water by capacitive deionization: experimental and theoretical investigations[J]. Chemical Engineering Journal, 2019, 361: 209-218. |
5 | Liu C, Ma L, Xu Y Y, et al. Experimental and theoretical study of a new CDI device for the treatment of desulfurization wastewater[J]. Environmental Science and Pollution Research International, 2022, 29(1): 518-530. |
6 | Lee J, Jo K, Lee J, et al. Rocking-chair capacitive deionization for continuous brackish water desalination[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10815-10822. |
7 | Moustafa H M, Obaid M, Nassar M M, et al. Titanium dioxide-decorated rGO as an effective electrode for ultrahigh-performance capacitive deionization[J]. Separation and Purification Technology, 2020, 235: 116178. |
8 | Liu N L, Sun S H, Hou C H. Studying the electrosorption performance of activated carbon electrodes in batch-mode and single-pass capacitive deionization[J]. Separation and Purification Technology, 2019, 215: 403-409. |
9 | Suss M E, Porada S, Sun X, et al. Water desalination via capacitive deionization: what is it and what can we expect from it? [J]. Energy & Environmental Science, 2015, 8(8): 2296-2319. |
10 | Suss M E, Baumann T F, Bourcier W L, et al. Capacitive desalination with flow-through electrodes[J]. Energy & Environmental Science, 2012, 5(11):9511. |
11 | 高晓丹, 李航, 田锐, 等. 利用基于Gouy-Chapman模型的离子有效电荷定量表征离子特异性效应[J]. 物理化学学报, 2014, 30(12): 2272-2282. |
Gao X D, Li H, Tian R, et al. Quantitative characterization of specific ion effects using an effective charge number based on the gouy-chapman model[J]. Acta Physico-Chimica Sinica, 2014, 30(12): 2272-2282. | |
12 | Porada S, Zhao R, van der Wal A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8): 1388-1442. |
13 | Oldham K B. A Gouy-Chapman-Stern model of the double layer at a (metal)/(ionic liquid) interface[J]. Journal of Electroanalytical Chemistry, 2008, 613(2): 131-138. |
14 | Zhao R, Biesheuvel P M, Miedema H, et al. Charge efficiency: a functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization[J]. The Journal of Physical Chemistry Letters, 2010, 1(1): 205-210. |
15 | Kondrat S, Wu P, Qiao R, et al. Accelerating charging dynamics in subnanometre pores [J]. Nature Materials, 2014, 13 (4): 387-393. |
16 | Biesheuvel P M, Porada S, Levi M, et al. Attractive forces in microporous carbon electrodes for capacitive deionization[J]. Journal of Solid State Electrochemistry, 2014, 18(5): 1365-1376. |
17 | Huang J S, Sumpter B, Meunier V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes[J]. Chemistry - A European Journal, 2008, 14(22): 6614-6626. |
18 | Biesheuvel P M, Bazant M Z. Nonlinear dynamics of capacitive charging and desalination by porous electrodes[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2010, 81(3): 031502. |
19 | Biesheuvel P M, Zhao R, Porada S, et al. Theory of membrane capacitive deionization including the effect of the electrode pore space[J]. Journal of Colloid and Interface Science, 2011, 360(1): 239-248. |
20 | Biesheuvel P M, van Limpt B, van der Wal A. Dynamic adsorption/desorption process model for capacitive deionization[J]. The Journal of Physical Chemistry C, 2009, 113(14): 5636-5640. |
21 | Newman J, Tiedemann W. Porous-electrode theory with battery applications[J]. AIChE Journal, 1975, 21(1): 25-41. |
22 | Bazant M Z, Thornton K, Ajdari A. Diffuse-charge dynamics in electrochemical systems[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(2): 021506. |
23 | Bouhadana Y, Avraham E, Soffer A, et al. Several basic and practical aspects related to electrochemical deionization of water[J]. AIChE Journal, 2010, 56(3): 779-789. |
24 | Perez C A R, Demirer O N, Clifton R L, et al. Macro analysis of the electro-adsorption process in low concentration NaCl solutions for water desalination applications[J]. Journal of the Electrochemical Society, 2013, 160(3): E13-E21. |
25 | Hemmatifar A, Stadermann M, Santiago J G. Two-dimensional porous electrode model for capacitive deionization[J]. The Journal of Physical Chemistry C, 2015, 119(44): 24681-24694. |
26 | Biesheuvel P M, Fu Y Q, Bazant M Z. Diffuse charge and Faradaic reactions in porous electrodes[J]. Physical Review E, 2011, 83(6): 061507. |
27 | Biesheuvel P M, Fu Y Q, Bazant M Z. Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes[J]. Russian Journal of Electrochemistry, 2012, 48(6): 580-592. |
28 | Zhao R, Biesheuvel P M, van der Wal A. Energy consumption and constant current operation in membrane capacitive deionization[J]. Energy & Environmental Science, 2012, 5(11): 9520-9527. |
29 | Suss M E, Biesheuvel P M, Baumann T F, et al. In situ spatially and temporally resolved measurements of salt concentration between charging porous electrodes for desalination by capacitive deionization[J]. Environmental Science & Technology, 2014, 48(3): 2008-2015. |
30 | Bard A J, Faulkner L R, White H S. Electrochemical Methods: Fundamentals and Applications[M]. New York: John Wiley & Sons, 2022. |
31 | Sousa P, Soares A, Monteiro E, et al. A CFD study of the hydrodynamics in a desalination membrane filled with spacers[J]. Desalination, 2014, 349: 22-30. |
32 | 马岚. 电容去离子技术用于电厂循环冷却排污水脱盐实验研究[D]. 北京: 华北电力大学, 2021. |
Ma L. Experimental study on the application of capacitive deionization technology in desalination of circulating cooling sewage in power plants[D]. Beijing: North China Electric Power University, 2021. |
[1] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[2] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[3] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
[4] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[5] | Junying YAN, Huangying WANG, Ruirui LI, Rong FU, Chenxiao JIANG, Yaoming WANG, Tongwen XU. Selective electrodialysis: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 224-236. |
[6] | Qian LIU, Xianglan ZHANG, Zhiping LI, Yulong LI, Mengxing HAN. Screening of deep eutectic solvents and study on extraction performance for oil-hydroxybenzene separation [J]. CIESC Journal, 2022, 73(9): 3915-3928. |
[7] | Gang WANG, Xiaoping CHE, Shiyong WANG, Jieshan QIU. Carbon electrodes modified with water-soluble charged polymer binder for enhanced capacitive deionization performance [J]. CIESC Journal, 2022, 73(4): 1763-1771. |
[8] | Qi WANG, Kuo FANG, Conghui HE, Kaijun WANG. Recent development and future challenges of flow-electrode capacitive deionization [J]. CIESC Journal, 2022, 73(3): 975-989. |
[9] | Jianwei ZHANG, Fengyuan AN, Xin DONG, Ying FENG. Analysis of dynamic characteristics of flow field in impinging stream reactor based on step jet [J]. CIESC Journal, 2022, 73(2): 622-633. |
[10] | Tianyuan WANG, Chunbo CHEN, Lin SUN, Xionglin LUO. Optimal design of slow-time-varying system for multi-effect distillation desalination based on full-cycle slow fouling [J]. CIESC Journal, 2022, 73(2): 759-769. |
[11] | Dehong WANG, Lin SUN, Xionglin LUO. Full-cycle slow-lift limited optimization analysis of multi-effect distillation heat transfer temperature difference in seawater desalination system [J]. CIESC Journal, 2022, 73(12): 5469-5482. |
[12] | XU Jianwei, LIANG Yingzong, LUO Xianglong, CHEN Jianyong, YANG Zhi, CHEN Ying. Integration and analysis of PRICO-membrane distillation seawater desalination system [J]. CIESC Journal, 2021, 72(S1): 437-444. |
[13] | WANG Zhaoqi, LI Mengshan, HU Haitao, WEI Wenjian. Development of simulation model for double row folded microchannel heat exchanger [J]. CIESC Journal, 2021, 72(S1): 113-119. |
[14] | XU Mengkai, LI Shuhong, JIN Zhenghao. Performance of ammonia-water-lithium bromide ternary working fluid absorption refrigeration [J]. CIESC Journal, 2021, 72(S1): 127-133. |
[15] | Zhongquan GUO, Xiang ZOU, Weidong MAO, Sui SUN, Sai MA, Shunzhi LYU, Xuefei LIU, Yuan WANG. CFD simulations of mass transfer and concentration polarization in a spiral-wound RO element for coal mine water desalination [J]. CIESC Journal, 2021, 72(9): 4808-4815. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||