CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4808-4815.DOI: 10.11949/0438-1157.20210075
• Separation engineering • Previous Articles Next Articles
Zhongquan GUO1(),Xiang ZOU2,Weidong MAO1(
),Sui SUN2,Sai MA1,Shunzhi LYU2,Xuefei LIU2,Yuan WANG2,3
Received:
2021-01-12
Revised:
2021-04-07
Online:
2021-09-05
Published:
2021-09-05
Contact:
Weidong MAO
郭中权1(),邹湘2,毛维东1(
),孙邃2,马赛1,吕顺之2,刘雪菲2,王远2,3
通讯作者:
毛维东
作者简介:
郭中权(1973—),男,硕士,研究员,基金资助:
CLC Number:
Zhongquan GUO, Xiang ZOU, Weidong MAO, Sui SUN, Sai MA, Shunzhi LYU, Xuefei LIU, Yuan WANG. CFD simulations of mass transfer and concentration polarization in a spiral-wound RO element for coal mine water desalination[J]. CIESC Journal, 2021, 72(9): 4808-4815.
郭中权, 邹湘, 毛维东, 孙邃, 马赛, 吕顺之, 刘雪菲, 王远. 矿井水脱盐过程中卷式反渗透膜性能的数值模拟研究[J]. 化工学报, 2021, 72(9): 4808-4815.
离子的质量浓度/(mg/L) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | Fe2+ | Al3+ | Ba2+ | K + | Na+ | Cl- | F- | SO42- | NO3- | SiO2 | ||||
8.17 | 2608.5 | 308.51 | 109.53 | 31.1 | 8.9 | 0.08 | 0.22 | 0.018 | 10.2 | 881 | 393 | 3.8 | 1030 | 0.31 | 3.41 |
Table 1 Compositions of the feedwater to the RO plant for treating coal mine water in Inner Mongolia
离子的质量浓度/(mg/L) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | Fe2+ | Al3+ | Ba2+ | K + | Na+ | Cl- | F- | SO42- | NO3- | SiO2 | ||||
8.17 | 2608.5 | 308.51 | 109.53 | 31.1 | 8.9 | 0.08 | 0.22 | 0.018 | 10.2 | 881 | 393 | 3.8 | 1030 | 0.31 | 3.41 |
无机盐 | 扩散系数,D/(m2/s) | 文献 |
---|---|---|
NaCl | 1.59×10-9 | [ |
Na2SO4 | 1.08×10-9 | [ |
MgSO4 | 1.11×10-9 | [ |
CaSO4 | 0.4×10-9 | [ |
Table 2 Diffusion coefficient
无机盐 | 扩散系数,D/(m2/s) | 文献 |
---|---|---|
NaCl | 1.59×10-9 | [ |
Na2SO4 | 1.08×10-9 | [ |
MgSO4 | 1.11×10-9 | [ |
CaSO4 | 0.4×10-9 | [ |
实验工况 | 进水压强/MPa | 进水流量/(ml/min) | NaCl/(mg/L) | Na2SO4/(mg/L) | MgSO4/(mg/L) | CaSO4/(mg/L) | 实测产水流量/(ml/min) | 模拟产水流量/(ml/min) | 误差/% |
---|---|---|---|---|---|---|---|---|---|
1 | 1.8 | 169.68 | 401.7 | 3257.2 | 401.2 | 449.3 | 4.67±0.1 | 4.50 | 3.58 |
2 | 1.4 | 177.24 | 401.7 | 3257.2 | 401.2 | 449.3 | 3.75±0.08 | 3.67 | 2.08 |
3 | 1.7 | 177.24 | 819.1 | 669.8 | 179.2 | 421.5 | 6.44±0.17 | 6.16 | 4.44 |
Table 3 Comparison of the simulation results with experimentally measured data at three different conditions
实验工况 | 进水压强/MPa | 进水流量/(ml/min) | NaCl/(mg/L) | Na2SO4/(mg/L) | MgSO4/(mg/L) | CaSO4/(mg/L) | 实测产水流量/(ml/min) | 模拟产水流量/(ml/min) | 误差/% |
---|---|---|---|---|---|---|---|---|---|
1 | 1.8 | 169.68 | 401.7 | 3257.2 | 401.2 | 449.3 | 4.67±0.1 | 4.50 | 3.58 |
2 | 1.4 | 177.24 | 401.7 | 3257.2 | 401.2 | 449.3 | 3.75±0.08 | 3.67 | 2.08 |
3 | 1.7 | 177.24 | 819.1 | 669.8 | 179.2 | 421.5 | 6.44±0.17 | 6.16 | 4.44 |
Fig.8 NaCl, CaSO4 and MgSO4 concentrations in the feed channel and in the boundary layer as a function of distance to inlet of the BW 30-400 RO element
1 | Fritzmann C, Löwenberg J, Wintgens T, et al. State-of-the-art of reverse osmosis desalination[J]. Desalination, 2007, 216(1/2/3): 1-76. |
2 | Qasim M, Badrelzaman M, Darwish N N, et al. Reverse osmosis desalination: a state-of-the-art review[J]. Desalination, 2019, 459: 59-104. |
3 | Lin W C, Li M C, Wang Y H, et al. Quantifying the dynamic evolution of organic, inorganic and biological synergistic fouling during nanofiltration using statistical approaches[J]. Environment International, 2019, 133: 105201. |
4 | Rice D, Barrios A C, Xiao Z W, et al. Development of anti-biofouling feed spacers to improve performance of reverse osmosis modules[J]. Water Research, 2018, 145: 599-607. |
5 | 毛维东, 周如禄, 郭中权. 煤矿矿井水零排放处理技术与应用[J]. 煤炭科学技术, 2017, 45(11): 205-210. |
Mao W D, Zhou R L, Guo Z Q. Zero liquid discharge treatment technology and application for coal mine drainage water[J]. Coal Science and Technology, 2017, 45(11): 205-210. | |
6 | Fimbres-Weihs G A, Wiley D E. Numerical study of mass transfer in three-dimensional spacer-filled narrow channels with steady flow[J]. Journal of Membrane Science, 2007, 306(1/2): 228-243. |
7 | Li F, Meindersma W, de Haan A B, et al. Optimization of commercial net spacers in spiral wound membrane modules[J]. Journal of Membrane Science, 2002, 208(1/2): 289-302. |
8 | Shakaib M, Hasani S M F, Mahmood M. Study on the effects of spacer geometry in membrane feed channels using three-dimensional computational flow modeling[J]. Journal of Membrane Science, 2007, 297(1/2): 74-89. |
9 | Vrouwenvelder J S, Picioreanu C, Kruithof J C, et al. Biofouling in spiral wound membrane systems: three-dimensional CFD model based evaluation of experimental data[J]. Journal of Membrane Science, 2010, 346(1): 71-85. |
10 | Picioreanu C, Vrouwenvelder J S, van Loosdrecht M C M. Three-dimensional modeling of biofouling and fluid dynamics in feed spacer channels of membrane devices[J]. Journal of Membrane Science, 2009, 345(1/2): 340-354. |
11 | Ahmad A L, Lau K K, Bakar M Z A, et al. Integrated CFD simulation of concentration polarization in narrow membrane channel[J]. Computers & Chemical Engineering, 2005, 29(10): 2087-2095. |
12 | Gu B, Xu X Y, Adjiman C S. A predictive model for spiral wound reverse osmosis membrane modules: the effect of winding geometry and accurate geometric details[J]. Computers & Chemical Engineering, 2017, 96: 248-265. |
13 | Schwinge J, Neal P R, Wiley D E, et al. Spiral wound modules and spacers: review and analysis[J]. Journal of Membrane Science, 2004, 242(1/2): 129-153. |
14 | Bucs S S, Valladares Linares R, Marston J O, et al. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes[J]. Water Research, 2015, 87: 299-310. |
15 | Liang Y Y, Chapman M B, Fimbres Weihs G A, et al. CFD modelling of electro-osmotic permeate flux enhancement on the feed side of a membrane module[J]. Journal of Membrane Science, 2014, 470: 378-388. |
16 | Wiley D E, Fletcher D F. Techniques for computational fluid dynamics modelling of flow in membrane channels[J]. Journal of Membrane Science, 2003, 211(1): 127-137. |
17 | Pitzer K S, Mayorga G. Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent[J]. The Journal of Physical Chemistry, 1973, 77(19): 2300-2308. |
18 | Pitzer K S, Mayorga G. Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2-2 electrolytes[J]. Journal of Solution Chemistry, 1974, 3(7): 539-546. |
19 | Wolfe T, Metcalfe P, Osmotic pressure calculation using Pitzer equation modeling[C]//IDA World Congress on Desalination and Water Reuse. Perth: 2011. |
20 | 胡中爱, 吴红英. 反渗透过程的浓度极化及其传质系数测定[J]. 化工学报, 2000, 51(5): 695-698. |
Hu Z A, Wu H Y. Concentration polarization and measurement of mass transfer coefficient for reverse osmosis[J]. Journal of Chemical Industry and Engineering (China), 2000, 51(5): 695-698. | |
21 | 王亚琴, 徐铜文, 王焕庭. 正渗透原理及分离传质过程浅析[J]. 化工学报, 2013, 64(1): 252-260. |
Wang Y Q, Xu T W, Wang H T. Forward osmosis membrane process and its mass transport mechanisms[J]. CIESC Journal, 2013, 64(1): 252-260. | |
22 | Guggenheim E A. The diffusion coefficient of sodium chloride[J]. Transactions of the Faraday Society, 1954, 50: 1048. |
23 | Applin K R, Lasaga A C. The determination of SO42-, NaSO4-, and MgSO40 tracer diffusion coefficients and their application to diagenetic flux calculations[J]. Geochimica et Cosmochimica Acta, 1984, 48(10): 2151-2162. |
24 | Christoffersen J, Christoffersen M R. The kinetics of dissolution of calcium sulphate dihydrate in water[J]. Journal of Crystal Growth, 1976, 35(1): 79-88. |
25 | Cao Z, Wiley D E, Fane A G. CFD simulations of net-type turbulence promoters in a narrow channel[J]. Journal of Membrane Science, 2001, 185(2): 157-176. |
26 | Santos J L C, Geraldes V, Velizarov S, et al. Investigation of flow patterns and mass transfer in membrane module channels filled with flow-aligned spacers using computational fluid dynamics (CFD)[J]. Journal of Membrane Science, 2007, 305(1/2): 103-117. |
27 | Koutsou C P, Yiantsios S G, Karabelas A J. A numerical and experimental study of mass transfer in spacer-filled channels: effects of spacer geometrical characteristics and Schmidt number[J]. Journal of Membrane Science, 2009, 326(1): 234-251. |
28 | Ishigami T, Matsuyama H. Numerical modeling of concentration polarization in spacer-filled channel with permeation across reverse osmosis membrane[J]. Industrial & Engineering Chemistry Research, 2015, 54(5): 1665-1674. |
29 | Li Y L, Tung K L, Lu M Y, et al. Mitigating the curvature effect of the spacer-filled channel in a spiral-wound membrane module[J]. Journal of Membrane Science, 2009, 329(1/2): 106-118. |
30 | Ranade V V, Kumar A. Comparison of flow structures in spacer-filled flat and annular channels[J]. Desalination, 2006, 191(1/2/3): 236-244. |
[1] | WU Yingya, PENG Li, LAN Xingying, GAO Jinsen. Effect of electrostatic on bubble hydrodynamics in gas-solids bubbling bed with and without immersed horizontal tubes [J]. CIESC Journal, 2016, 67(4): 1150-1158. |
[2] | YANG Zhao, CHENG Jingcai, YANG Chao, LIANG Bin. Study on permeability of asymmetric ceramic membrane tubes with CFD simulation [J]. CIESC Journal, 2015, 66(8): 3120-3129. |
[3] | DAI Chengna, XIANG Yin, LEI Zhigang. Mass transfer and hydraulic performance of CO2 absorption by ionic liquids over structured packings [J]. CIESC Journal, 2015, 66(8): 2953-2961. |
[4] | XU Qi, DENG Chao, SHI Yafei, XU Xinyu, YU Wenbo, LI Chao, CHEN Ye, LIANG Sha, HU Jingping, HE Shu, WANG Rong, YANG Changzhu, YANG Jiakuan. CFD simulation of chemical conditioning unit of municipal sludge [J]. CIESC Journal, 2015, 66(10): 4145-4154. |
[5] | LIN Keli,BI Rongshan,TAN Xinshun. CFD simulation of turbulent micro-mixing performance in ejectors [J]. , 2009, 28(5): 760-. |
[6] | LI Bo,ZHANG Qingwen,HONG Housheng,YOU Tao. Several factors of CFD numerical simulation in stirred tank [J]. , 2009, 28(1): 7-. |
[7] | WANGZheng,MAOZaisha,YANGChao, SHENXiangqian. Computational fluid dynamics approach to the effect of mixing and draft tube on the precipitation of barium sulfate in a continuous stirred tank [J]. , 2006, 14(6): 713-722. |
[8] | ZHANGYanhong, YANGChao, MAOZaisha. Large Eddy Simulation of Liquid Flow in a Stirred Tank with Im-proved Inner-Outer Iterative Algorithm [J]. , 2006, 14(3): 321-329. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 472
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 397
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||