CIESC Journal ›› 2023, Vol. 74 ›› Issue (1): 408-415.DOI: 10.11949/0438-1157.20221178
• Thermodynamics • Previous Articles Next Articles
Jin CAI(), Xiaohui WANG(), Han TANG, Guangjin CHEN(), Changyu SUN
Received:
2022-08-29
Revised:
2022-11-24
Online:
2023-03-20
Published:
2023-01-05
Contact:
Xiaohui WANG, Guangjin CHEN
通讯作者:
王晓辉,陈光进
作者简介:
蔡进(1998—),男,博士研究生,cj716788@163.com
基金资助:
CLC Number:
Jin CAI, Xiaohui WANG, Han TANG, Guangjin CHEN, Changyu SUN. Prediction of the phase equilibrium of semi-clathrate hydrate in TBAB aqueous solution[J]. CIESC Journal, 2023, 74(1): 408-415.
蔡进, 王晓辉, 汤涵, 陈光进, 孙长宇. TBAB水溶液体系中半笼型水合物的相平衡预测模型[J]. 化工学报, 2023, 74(1): 408-415.
Add to citation manager EndNote|Ris|BibTeX
组分 | Structure A | Structure B | ||
---|---|---|---|---|
A1 | A2 | A1 | A2 | |
H2 | -1006.46 | 34269.46 | 270.95 | 2185.29 |
CH4 | 7.27 | -2833.25 | 44.87 | -1015.54 |
CO2 | -0.185 | -311.54 | 7.15 | -121.91 |
N2 | -3.91 | -672.69 | 18.27 | -747.76 |
Table 1 Correlated parameters in Eq. (12)
组分 | Structure A | Structure B | ||
---|---|---|---|---|
A1 | A2 | A1 | A2 | |
H2 | -1006.46 | 34269.46 | 270.95 | 2185.29 |
CH4 | 7.27 | -2833.25 | 44.87 | -1015.54 |
CO2 | -0.185 | -311.54 | 7.15 | -121.91 |
N2 | -3.91 | -672.69 | 18.27 | -747.76 |
水合物 | λ1 | λ2 | β/(K·MPa-1) |
---|---|---|---|
A型水合物 | 3/26 | 1/26 | 9.381 |
B型水合物 | 3/38 | 1/38 | 13.711 |
Table 2 Structural parameters of TBAB semi-clathrate hydrate[11]
水合物 | λ1 | λ2 | β/(K·MPa-1) |
---|---|---|---|
A型水合物 | 3/26 | 1/26 | 9.381 |
B型水合物 | 3/38 | 1/38 | 13.711 |
System | Np | Conc./%(mass) | T/K | P/MPa | AADT/% | Ref. |
---|---|---|---|---|---|---|
CH4 | 6 | 5 | 287.15—296.75 | 4.688—41.369 | 0.182 | [ |
7 | 10 | 284.4—292.2 | 1.112—10.158 | 0.208 | [ | |
5 | 10 | 286.35—291.45 | 2.23—8.87 | 0.198 | [ | |
N2 | 5 | 5 | 281.3—284.3 | 4.12—9.18 | 0.008 | [ |
6 | 10 | 284.3—287.6 | 3.31—9.79 | 0.097 | [ | |
6 | 10 | 288.15—292.95 | 10.945—33.503 | 0.087 | [ | |
CO2 | 6 | 5 | 280.2—286.5 | 0.40—3.42 | 0.113 | [ |
13 | 10 | 281.81—289.14 | 0.349—4.075 | 0.065 | [ | |
CO2+N2 | 9 | 5 | 282.8—289.2 | 1.47—19.07 | 0.068 | [ |
16 | 10 | 284.57—288.81 | 2.108—5.851 | 0.022 | [ | |
10 | 15 | 284.3—291.6 | 1.42—15.94 | 0.242 | [ | |
CH4+CO2 | 10 | 5 | 286.26—289.46 | 3.619—6.493 | 0.143 | [ |
8 | 10 | 288.51—291.41 | 2.828—6.540 | 0.094 | [ | |
CO2+H2 | 10 | 5 | 277.35—284.55 | 0.25—6.23 | 0.129 | [ |
10 | 8.30 | 279.75—286.55 | 0.27—5.91 | 0.095 | [ | |
8 | 15.3 | 283.05—287.75 | 0.64—5.18 | 0.076 | [ | |
5 | 15.3 | 281.75—285.45 | 0.51—7.04 | 0.252 | [ | |
overall | 140 | 0.113 |
Table 3 Predictions of phase equilibrium for B-type semi-clathrate hydrate in aqueous solutions containing TBAB
System | Np | Conc./%(mass) | T/K | P/MPa | AADT/% | Ref. |
---|---|---|---|---|---|---|
CH4 | 6 | 5 | 287.15—296.75 | 4.688—41.369 | 0.182 | [ |
7 | 10 | 284.4—292.2 | 1.112—10.158 | 0.208 | [ | |
5 | 10 | 286.35—291.45 | 2.23—8.87 | 0.198 | [ | |
N2 | 5 | 5 | 281.3—284.3 | 4.12—9.18 | 0.008 | [ |
6 | 10 | 284.3—287.6 | 3.31—9.79 | 0.097 | [ | |
6 | 10 | 288.15—292.95 | 10.945—33.503 | 0.087 | [ | |
CO2 | 6 | 5 | 280.2—286.5 | 0.40—3.42 | 0.113 | [ |
13 | 10 | 281.81—289.14 | 0.349—4.075 | 0.065 | [ | |
CO2+N2 | 9 | 5 | 282.8—289.2 | 1.47—19.07 | 0.068 | [ |
16 | 10 | 284.57—288.81 | 2.108—5.851 | 0.022 | [ | |
10 | 15 | 284.3—291.6 | 1.42—15.94 | 0.242 | [ | |
CH4+CO2 | 10 | 5 | 286.26—289.46 | 3.619—6.493 | 0.143 | [ |
8 | 10 | 288.51—291.41 | 2.828—6.540 | 0.094 | [ | |
CO2+H2 | 10 | 5 | 277.35—284.55 | 0.25—6.23 | 0.129 | [ |
10 | 8.30 | 279.75—286.55 | 0.27—5.91 | 0.095 | [ | |
8 | 15.3 | 283.05—287.75 | 0.64—5.18 | 0.076 | [ | |
5 | 15.3 | 281.75—285.45 | 0.51—7.04 | 0.252 | [ | |
overall | 140 | 0.113 |
System | Np | Conc./%(mass) | T/K | P/MPa | AADT/% | Ref. |
---|---|---|---|---|---|---|
N2 | 5 | 20 | 286.6—289.2 | 4.24—9.49 | 0.133 | [ |
8 | 32 | 285.51—290.6 | 2.01—11.48 | 0.120 | [ | |
5 | 40 | 286.8—289.4 | 4.04—8.97 | 0.074 | [ | |
CO2 | 10 | 19 | 283.55—290.46 | 0.42—4.36 | 0.095 | [ |
3 | 32 | 288.77—291.3 | 1.60—3.78 | 0.082 | [ | |
4 | 40.74 | 287.35—291.75 | 1.12—4.55 | 0.143 | [ | |
11 | 55 | 285.33—290.69 | 0.778—4.249 | 0.065 | [ | |
4 | 60 | 287.05—290.20 | 1.72—4.37 | 0.046 | [ | |
CO2+H2 | 4 | 30 | 289.1—290.0 | 1.98—3.45 | 0.214 | [ |
5 | 32.9 | 285.95—288.55 | 0.50—4.20 | 0.205 | [ | |
8 | 35.6 | 286.05—288.56 | 0.54—4.12 | 0.123 | [ | |
CO2+N2 | 5 | 30 | 286.6—291.0 | 1.06—3.70 | 0.075 | [ |
5 | 30 | 285.7—293.2 | 1.57—16.21 | 0.194 | [ | |
4 | 40.7 | 286.15—287.55 | 2.04—3.85 | 0.050 | [ | |
overall | 81 | 0.112 |
Table 4 Predictions of phase equilibrium for A-type semi-clathrate hydrate in aqueous solutions containing TBAB
System | Np | Conc./%(mass) | T/K | P/MPa | AADT/% | Ref. |
---|---|---|---|---|---|---|
N2 | 5 | 20 | 286.6—289.2 | 4.24—9.49 | 0.133 | [ |
8 | 32 | 285.51—290.6 | 2.01—11.48 | 0.120 | [ | |
5 | 40 | 286.8—289.4 | 4.04—8.97 | 0.074 | [ | |
CO2 | 10 | 19 | 283.55—290.46 | 0.42—4.36 | 0.095 | [ |
3 | 32 | 288.77—291.3 | 1.60—3.78 | 0.082 | [ | |
4 | 40.74 | 287.35—291.75 | 1.12—4.55 | 0.143 | [ | |
11 | 55 | 285.33—290.69 | 0.778—4.249 | 0.065 | [ | |
4 | 60 | 287.05—290.20 | 1.72—4.37 | 0.046 | [ | |
CO2+H2 | 4 | 30 | 289.1—290.0 | 1.98—3.45 | 0.214 | [ |
5 | 32.9 | 285.95—288.55 | 0.50—4.20 | 0.205 | [ | |
8 | 35.6 | 286.05—288.56 | 0.54—4.12 | 0.123 | [ | |
CO2+N2 | 5 | 30 | 286.6—291.0 | 1.06—3.70 | 0.075 | [ |
5 | 30 | 285.7—293.2 | 1.57—16.21 | 0.194 | [ | |
4 | 40.7 | 286.15—287.55 | 2.04—3.85 | 0.050 | [ | |
overall | 81 | 0.112 |
1 | Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. Boca Raton: CRC Press, 2008. |
2 | 孙长宇, 黄强, 陈光进. 气体水合物形成的热力学与动力学研究进展[J]. 化工学报, 2006, 57(5): 1031-1039. |
Sun C Y, Huang Q, Chen G J. Progress of thermodynamics and kinetics of gas hydrate formation[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(5): 1031-1039. | |
3 | 王晓辉, 许强, 郑华星, 等. 天然气水合物置换开采的能源效率研究[J]. 化工学报, 2020, 71(12): 5754-5762. |
Wang X H, Xu Q, Zheng H X, et al. Energy efficiency analysis of natural gas hydrates production method[J]. CIESC Journal, 2020, 71(12): 5754-5762. | |
4 | Chen J, Yan K L, Chen G J, et al. Insights into the formation mechanism of hydrate plugging in pipelines[J]. Chemical Engineering Science, 2015, 122: 284-290. |
5 | 樊栓狮, 程宏远, 陈光进, 等. 水合物法分离技术研究[J]. 现代化工, 1999, 19(2): 11-14. |
Fan S S, Cheng H Y, Chen G J, et al. Separation technique based on gas hydrate formation[J]. Modern Chemical Industry, 1999, 19(2): 11-14. | |
6 | Fukumoto A, Paricaud P, Dalmazzone D, et al. Modeling the dissociation conditions of carbon dioxide+TBAB, TBAC, TBAF, and TBPB semiclathrate hydrates[J]. Journal of Chemical & Engineering Data, 2014, 59(10): 3193-3204. |
7 | Avula V R, Gupta P, Gardas R L, et al. Thermodynamic modeling of phase equilibrium of carbon dioxide clathrate hydrate in aqueous solutions of promoters and inhibitors suitable for gas separation[J]. Asia-Pacific Journal of Chemical Engineering, 2017, 12(5): 709-722. |
8 | Eslamimanesh A, Mohammadi A H, Richon D. Thermodynamic modeling of phase equilibria of semi-clathrate hydrates of CO2, CH4, or N2+tetra-n-butylammonium bromide aqueous solution[J]. Chemical Engineering Science, 2012, 81: 319-328. |
9 | Chen G J, Guo T M. Thermodynamic modeling of hydrate formation based on new concepts[J]. Fluid Phase Equilibria, 1996, 122(1/2): 43-65. |
10 | Wang L B, Cui J L, Sun C Y, et al. Review on the applications and modifications of the Chen-Guo model for hydrate formation and dissociation[J]. Energy & Fuels, 2021, 35(4): 2936-2964. |
11 | Ma Q L, Qi J L, Chen G J, et al. Modeling study on phase equilibria of semiclathrate hydrates of pure gases and gas mixtures in aqueous solutions of TBAB and TBAF[J]. Fluid Phase Equilibria, 2016, 430: 178-187. |
12 | 门文欣, 彭庆收, 桂霞. 不同季铵盐作用下的CO2水合物相平衡[J]. 化工学报, 2022, 73(4): 1472-1482. |
Men W X, Peng Q S, Gui X. Phase equilibrium of CO2 hydrate in the presence of four different quaternary ammonium salts[J]. CIESC Journal, 2022, 73(4): 1472-1482. | |
13 | Chen C C, Song Y H. Generalized electrolyte-NRTL model for mixed-solvent electrolyte systems[J]. AIChE Journal, 2004, 50(8): 1928-1941. |
14 | Chen C C, Evans L B. A local composition model for the excess Gibbs energy of aqueous electrolyte systems[J]. AIChE Journal, 1986, 32(3): 444-454. |
15 | Renon H, Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures[J]. AIChE Journal, 1968, 14(1): 135-144. |
16 | Chen G J, Guo T M. A new approach to gas hydrate modelling[J]. Chemical Engineering Journal, 1998, 71(2): 145-151. |
17 | Lindenbaum S, Boyd G E. Osmotic and activity coefficients for the symmetrical tetraalkyl ammonium halides in aqueous solution at 25℃[J]. The Journal of Physical Chemistry, 1964, 68(4): 911-917. |
18 | Oyama H, Shimada W, Ebinuma T, et al. Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals[J]. Fluid Phase Equilibria, 2005, 234(1/2): 131-135. |
19 | Arjmandi M, Chapoy A, Tohidi B. Equilibrium data of hydrogen, methane, nitrogen, carbon dioxide, and natural gas in semi-clathrate hydrates of tetrabutyl ammonium bromide[J]. Journal of Chemical & Engineering Data, 2007, 52(6): 2153-2158. |
20 | Mohammadi A H, Eslamimanesh A, Belandria V, et al. Phase equilibria of semiclathrate hydrates of CO2, N2, CH4, or H2+tetra-n-butylammonium bromide aqueous solution[J]. Journal of Chemical & Engineering Data, 2011, 56(10): 3855-3865. |
21 | Lee S, Park S, Lee Yet al. Guest gas enclathration in semiclathrates of tetra-n-butylammonium bromide: stability condition and spectroscopic analysis[J]. Langmuir, 2011, 27(17): 10597-10603. |
22 | Lee S, Lee Y, Park Set al. Phase equilibria of semiclathrate hydrate for nitrogen in the presence of tetra-n-butylammonium bromide and fluoride[J]. Journal of Chemical & Engineering Data, 2010, 55(12): 5883-5886. |
23 | Li S F, Fan S S, Wang J Q, et al. Semiclathrate hydrate phase equilibria for CO2 in the presence of tetra-n-butylammonium halide (bromide, chloride, or fluoride)[J]. Journal of Chemical & Engineering Data, 2010, 55(9): 3212-3215. |
24 | Ye N, Zhang P. Equilibrium data and morphology of tetra-n-butyl ammonium bromide semiclathrate hydrate with carbon dioxide[J]. Journal of Chemical & Engineering Data, 2012, 57(5): 1557-1562. |
25 | Belandria V, Mohammadi A H, Eslamimanesh A, et al. Phase equilibrium measurements for semi-clathrate hydrates of the (CO2+N2+tetra-n-butylammonium bromide) aqueous solution systems: Part 2[J]. Fluid Phase Equilibria, 2012, 322: 105-112. |
26 | Meysel P, Oellrich L, Bishnoi P R, et al. Experimental investigation of incipient equilibrium conditions for the formation of semi-clathrate hydrates from quaternary mixtures of (CO2+N2+TBAB+H2O)[J]. The Journal of Chemical Thermodynamics, 2011, 43(10): 1475-1479. |
27 | Mohammadi A H, Eslamimanesh A, Belandria V, et al. Phase equilibrium measurements for semi-clathrate hydrates of the (CO2+N2+tetra-n-butylammonium bromide) aqueous solution system[J]. The Journal of Chemical Thermodynamics, 2012, 46: 57-61. |
28 | Acosta H Y, Bishnoi P R, Clarke M A. Experimental measurements of the thermodynamic equilibrium conditions of tetra-n-butylammonium bromide semiclathrates formed from synthetic landfill gases[J]. Journal of Chemical & Engineering Data, 2011, 56(1): 69-73. |
29 | Li X S, Xia Z M, Chen Z Y, et al. Equilibrium hydrate formation conditions for the mixtures of CO2+H2+tetrabutyl ammonium bromide[J]. Journal of Chemical & Engineering Data, 2010, 55(6): 2180-2184. |
30 | Kim S M, Lee J D, Lee H J, et al. Gas hydrate formation method to capture the carbon dioxide for pre-combustion process in IGCC plant[J]. International Journal of Hydrogen Energy, 2011, 36(1): 1115-1121. |
31 | Muromachi S, Hashimoto H, Maekawa T, et al. Phase equilibrium and characterization of ionic clathrate hydrates formed with tetra-n-butylammonium bromide and nitrogen gas[J]. Fluid Phase Equilibria, 2016, 413: 249-253. |
32 | Mohammadi A H, Eslamimanesh A, Richon D. Semi-clathrate hydrate phase equilibrium measurements for the CO2+H2/CH4+tetra-n-butylammonium bromide aqueous solution system[J]. Chemical Engineering Science, 2013, 94: 284-290. |
33 | 鲁涛, 张郁, 李小森, 等. CO2-N2-TBAB和CO2-N2-THF体系的水合物平衡生成条件[J]. 过程工程学报, 2009, 9(3): 541-544. |
Lu T, Zhang Y, Li X S, et al. Equilibrium conditions of hydrate formation in the systems of CO2-N2-TBAB and CO2-N2-THF[J]. The Chinese Journal of Process Engineering, 2009, 9(3): 541-544. | |
34 | Zhou X B, Long Z, He Y, et al. Phase equilibria and the crystallographic properties of TBAB-CO2 semiclathrate hydrates[J]. Journal of Chemical & Engineering Data, 2018, 63(5): 1249-1255. |
35 | Wang S, Danner M, Kuchling T, et al. Measurement of the three-phase (vapour+liquid+solid) equilibrium conditions of semi-clathrates formed from mixtures of CO2, CO and H2 [J]. The Journal of Chemical Thermodynamics, 2013, 56: 149-152. |
36 | Zhong D L, Englezos P. Methane separation from coal mine methane gas by tetra-n-butyl ammonium bromide semiclathrate hydrate formation[J]. Energy & Fuels, 2012, 26(4): 2098-2106. |
37 | Godishala K K, Sangwai J S, Sami N A, et al. Phase stability of semiclathrate hydrates of carbon dioxide in synthetic sea water[J]. Journal of Chemical & Engineering Data, 2013, 58(4): 1062-1067. |
[1] | Erqi WANG, Shuzhou PENG, Zhen YANG, Yuanyuan DUAN. Evaluation of vapor-liquid equilibrium models for mixtures containing HFOs [J]. CIESC Journal, 2023, 74(8): 3216-3225. |
[2] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[3] | Ke CHEN, Li DU, Ying ZENG, Siying REN, Xudong YU. Phase equilibria and calculation of quaternary system LiCl+MgCl2+CaCl2+H2O at 323.2 K [J]. CIESC Journal, 2023, 74(5): 1896-1903. |
[4] | Jingbo GAO, Qiang SUN, Qing LI, Yiwei WANG, Xuqiang GUO. Hydrate equilibrium model of hydrogen-containing gas considering hydrates structure transformation [J]. CIESC Journal, 2023, 74(2): 666-673. |
[5] | Qian LIU, Xianglan ZHANG, Zhiping LI, Yulong LI, Mengxing HAN. Screening of deep eutectic solvents and study on extraction performance for oil-hydroxybenzene separation [J]. CIESC Journal, 2022, 73(9): 3915-3928. |
[6] | Huan ZHOU, Mengli ZHANG, Qing HAO, Si WU, Jie LI, Cunbing XU. Process mechanism and dynamic behaviors of magnesium sulfate type carnallite converting into kainite [J]. CIESC Journal, 2022, 73(9): 3841-3850. |
[7] | Yanlong JIANG, Ni ZHANG, Danran LI, Bingbing ZHU, Yichen JIANG, Haijun CHEN, Yuezhao ZHU. Selected ionic liquids by COSMO-RS method for tar removal [J]. CIESC Journal, 2022, 73(4): 1704-1713. |
[8] | Tengfei GAO, Guoxuan LI, Zhigang LEI. Solvents selection for separation of biphenyl from FCC diesel: experimental and computational thermodynamics [J]. CIESC Journal, 2022, 73(12): 5314-5323. |
[9] | Qian LIU, Xianglan ZHANG, Zhiping LI, Zhuoqi LI, Hong YU. Multiscale screening of ionic liquids as extractive solvents for oil-hydroxybenzene separation [J]. CIESC Journal, 2022, 73(11): 5011-5024. |
[10] | Pengcheng JING, Litao CHEN, Chuanliang YAN, Chuanxiang JIANG, Yuxiang XIA, Changhong YU, Haotian WANG. Study on growth process of semiclathrate hydrate on the surface of TBAB solution droplets suspended by ultrasonic [J]. CIESC Journal, 2022, 73(11): 4893-4902. |
[11] | Changwei PENG, Shihua SANG, Ruizhi CUI, Hongbao REN. Studies on three-dimensional phase diagram of the quinary system NaBr-KBr-MgBr2-CaBr2-H2O at 298.15 K [J]. CIESC Journal, 2022, 73(11): 4850-4858. |
[12] |
Siying REN, Xudong YU, Jun LUO, Xia FENG, Zhixing ZHAO, Zhihao YAO.
Phase equilibria of aqueous quaternary system Li+, K+, |
[13] | Zhirong CHEN, Yun TONG, Shenfeng YUAN, Hong YIN. Dissociation constants and activity coefficients of methionine in KCl aqueous solutions [J]. CIESC Journal, 2021, 72(9): 4469-4478. |
[14] | Jianyuan XU, Yanyang WU, Jumei XU, Yangfeng PENG. Study on vapor-liquid equilibria and distillation simulation of 1,3,5-trimethylbenzene-1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene-2-ethyltoluene at 2 kPa [J]. CIESC Journal, 2021, 72(9): 4504-4510. |
[15] | LI Dongchan, WANG Jiayu, WANG Shiqiang. Phase equilibria and phase diagram of the quaternary system (Li+, Mg2+//Cl-, borate-H2O) at 308.15 K [J]. CIESC Journal, 2021, 72(6): 3170-3178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||