CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5469-5482.DOI: 10.11949/0438-1157.20221212
• Process system engineering • Previous Articles Next Articles
Dehong WANG(), Lin SUN, Xionglin LUO()
Received:
2022-09-05
Revised:
2022-11-04
Online:
2023-01-17
Published:
2022-12-05
Contact:
Xionglin LUO
通讯作者:
罗雄麟
作者简介:
王德宏(1998—),男,硕士研究生,wang793108741@163.com
基金资助:
CLC Number:
Dehong WANG, Lin SUN, Xionglin LUO. Full-cycle slow-lift limited optimization analysis of multi-effect distillation heat transfer temperature difference in seawater desalination system[J]. CIESC Journal, 2022, 73(12): 5469-5482.
王德宏, 孙琳, 罗雄麟. 海水淡化系统多效蒸发传热温差全周期渐变优化分析[J]. 化工学报, 2022, 73(12): 5469-5482.
Add to citation manager EndNote|Ris|BibTeX
效序数 | 换热面积设计值 |
---|---|
1 | 3763.76 |
2 | 3636.11 |
3 | 3478.54 |
4 | 3281.99 |
5 | 3047.60 |
6 | 2775.37 |
7 | 2465.31 |
8 | 2116.27 |
Table 1 Design value of heat exchange area of eight-effect seawater desalination plant
效序数 | 换热面积设计值 |
---|---|
1 | 3763.76 |
2 | 3636.11 |
3 | 3478.54 |
4 | 3281.99 |
5 | 3047.60 |
6 | 2775.37 |
7 | 2465.31 |
8 | 2116.27 |
设计参数 | 设计可调参数 | ||
---|---|---|---|
进料方式 | 平行-交叉 | 每效进料流量Ff(i)/(kg/s) | 31.59 |
海水温度/℃ | 30 | 加热温差ΔTh(i)/℃ | 3 |
海水含盐量/(g/kg) | 30 | TVC引射流量Fent/(kg/s) | 4.43 |
冷凝器出口温度/℃ | 35 | 外来驱动蒸汽流量Fmot/(kg/s) | 7.35 |
驱动蒸汽压力Pmot/kPa | 500 | 淡水产量Frated/(kg/s) | 75.81 |
驱动蒸汽温度Tmot/℃ | 151.8 | 造水比GOR | 10.31 |
运行周期/月 | 24 | 预热温升ΔTp(i)/℃ | 4 |
Table 2 Specifications of the MED-TVC system with eight-effect
设计参数 | 设计可调参数 | ||
---|---|---|---|
进料方式 | 平行-交叉 | 每效进料流量Ff(i)/(kg/s) | 31.59 |
海水温度/℃ | 30 | 加热温差ΔTh(i)/℃ | 3 |
海水含盐量/(g/kg) | 30 | TVC引射流量Fent/(kg/s) | 4.43 |
冷凝器出口温度/℃ | 35 | 外来驱动蒸汽流量Fmot/(kg/s) | 7.35 |
驱动蒸汽压力Pmot/kPa | 500 | 淡水产量Frated/(kg/s) | 75.81 |
驱动蒸汽温度Tmot/℃ | 151.8 | 造水比GOR | 10.31 |
运行周期/月 | 24 | 预热温升ΔTp(i)/℃ | 4 |
控制手段 | 控制变量 |
---|---|
进料分离器 | 进料流量Ff(i) |
二次蒸汽阀 | 蒸发器蒸发温度T(i)、加热温差ΔTh(i) |
预热蒸汽分离器 | 预热温升ΔTp(i) |
Table 3 Single effect operation variables
控制手段 | 控制变量 |
---|---|
进料分离器 | 进料流量Ff(i) |
二次蒸汽阀 | 蒸发器蒸发温度T(i)、加热温差ΔTh(i) |
预热蒸汽分离器 | 预热温升ΔTp(i) |
参数 | 效序数 | 全周期优化次数 | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
蒸发温度T(i)/℃ | [65,67] | [61,63] | [58,60] | [54,56] | [51,53] | [47,49] | [43,45] | [40,41] | 12 |
预热温升∆Tp(i)/℃ | [ | 1 | |||||||
夹带蒸汽Fent/(kg/s) | [ | 12 | |||||||
总进料流量∑Ff(i)(i=1,…,8)/(kg/s) | [150,255] | 12 | |||||||
二次蒸汽阀温度损失 | [0,1.2] | 12 |
Table 4 optimization variables and optimization methods
参数 | 效序数 | 全周期优化次数 | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
蒸发温度T(i)/℃ | [65,67] | [61,63] | [58,60] | [54,56] | [51,53] | [47,49] | [43,45] | [40,41] | 12 |
预热温升∆Tp(i)/℃ | [ | 1 | |||||||
夹带蒸汽Fent/(kg/s) | [ | 12 | |||||||
总进料流量∑Ff(i)(i=1,…,8)/(kg/s) | [150,255] | 12 | |||||||
二次蒸汽阀温度损失 | [0,1.2] | 12 |
变量 | 效序数 | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
预热蒸汽分离比ξ(i) | 0.98 | 0.96 | 0.94 | 0.91 | 0.89 | 0.85 | 0.81 | — |
蒸发压力P(i)/kPa | 27.34 | 23.92 | 20.86 | 18.15 | 15.74 | 13.61 | 11.73 | 10.07 |
有效换热面积 | 3002 | 2914.81 | 2789.21 | 2632.69 | 2445.77 | 2228.64 | 1981.19 | 1702.91 |
二次蒸汽产量Fs(i)/(kg/s) | 11.33 | 11.16 | 10.68 | 10.09 | 9.41 | 8.63 | 7.75 | 6.77 |
污垢热阻Rf(i)/(m2∙K/W) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Table 5 State variables and their initial design values
变量 | 效序数 | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
预热蒸汽分离比ξ(i) | 0.98 | 0.96 | 0.94 | 0.91 | 0.89 | 0.85 | 0.81 | — |
蒸发压力P(i)/kPa | 27.34 | 23.92 | 20.86 | 18.15 | 15.74 | 13.61 | 11.73 | 10.07 |
有效换热面积 | 3002 | 2914.81 | 2789.21 | 2632.69 | 2445.77 | 2228.64 | 1981.19 | 1702.91 |
二次蒸汽产量Fs(i)/(kg/s) | 11.33 | 11.16 | 10.68 | 10.09 | 9.41 | 8.63 | 7.75 | 6.77 |
污垢热阻Rf(i)/(m2∙K/W) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
参数 | 设计 条件 | 常规裕量缓释优化方法 | 蒸发传热温差 全周期渐变优化方法 |
---|---|---|---|
外来驱动蒸汽Fmot/(kg/s) | 7.35 | [7.13,7.35] | [6.8,6.85] |
总蒸汽流量/(108 kg) | 4.64 | 4.55 | 4.30 |
造水比GOR | 10.31 | [10.31,10.62] | [11.07,11.15] |
二次蒸汽阀总温度损失 | 0 | 0 | 5.89 |
总加热温差 ΔTh(i)(i=1,…,7)/℃ | 21 | 21 | [19.10,24.82] |
Table 6 Comparison of operation results of design conditions, conventional optimization and temperature slow-lift limited optimization of full cycle evaporation heat transfer
参数 | 设计 条件 | 常规裕量缓释优化方法 | 蒸发传热温差 全周期渐变优化方法 |
---|---|---|---|
外来驱动蒸汽Fmot/(kg/s) | 7.35 | [7.13,7.35] | [6.8,6.85] |
总蒸汽流量/(108 kg) | 4.64 | 4.55 | 4.30 |
造水比GOR | 10.31 | [10.31,10.62] | [11.07,11.15] |
二次蒸汽阀总温度损失 | 0 | 0 | 5.89 |
总加热温差 ΔTh(i)(i=1,…,7)/℃ | 21 | 21 | [19.10,24.82] |
1 | Abu Al-Saud H, Griman J. Ras Tanura Refinery desalination plant case study towards operational excellence[J]. Water Resources and Industry, 2020, 23: 100124. |
2 | Al-Rawajfeh A E, Alrawashdeh A I, Al-Shabatat M, et al. Inhibitory effect of Hydrex anti-scalant on calcium scale deposition from seawater under multiple-effect distillers' conditions[J]. Water Resources and Industry, 2015, 11: 58-63. |
3 | Georgiadis M C, Papageorgiou L G. Optimal energy and cleaning management in heat exchanger networks under fouling[J]. Chemical Engineering Research and Design, 2000, 78(2): 168-179. |
4 | 贾利涛, 刘旭明, 唐智新. 低温多效海水淡化阻垢剂溶垢试验研究[J]. 冶金动力, 2020, 39(12): 66-70. |
Jia L T, Liu X M, Tang Z X. Experimental study on scale dissolving by multi-effect scale inhibitor in low temperature seawater desalination[J]. Metallurgical Power, 2020, 39(12): 66-70. | |
5 | Jin H Q, Shahane S, Zhang Y H, et al. Modeling of crystallization fouling on a horizontal-tube falling-film evaporator for thermal desalination[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121596. |
6 | 程达芳. 多效蒸发过程模拟: 以最优法求解多效蒸发各个参数[J]. 高校化学工程学报, 1989, 3(2): 84-93. |
Cheng D F. Simulation of multiple - effect evaporation processes-parameters evaluation of multiple-effect evaporation with optimization method[J]. Journal of Chemical Engineering of Chinese Universities, 1989, 3(2): 84-93. | |
7 | 罗雄麟, 孙琳, 张俊峰. 换热网络旁路优化设计[J]. 化工学报, 2008, 59(3): 646-652. |
Luo X L, Sun L, Zhang J F. Optimal design of bypass location on heat exchanger networks[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(3): 646-652. | |
8 | Xu F, Jiang H R, Wang R, et al. Influence of design margin on operation optimization and control performance of chemical processes[J]. Chinese Journal of Chemical Engineering, 2014, 22(1): 51-58. |
9 | Chen C B, Luo X L, Sun L. Margin slow released full cycle optimization due to slow time-varying fouling characteristics of multi-effect evaporation desalination system[J]. Chemical Engineering Research and Design, 2022, 179: 143-153. |
10 | 唐智新, 吴礼云, 梁红英, 等. 低温多效蒸馏海水淡化蒸发器结垢原因分析及清洗[J]. 冶金动力, 2015, 34(9): 61-65. |
Tang Z X, Wu L Y, Liang H Y, et al. Cause analysis and cleaning of scaling in the LT-MED seawater desalination evaporator[J]. Metallurgical Power, 2015, 34(9): 61-65. | |
11 | 罗刚, 王娟, 郭思航, 等. 多效蒸发器结垢机理及预防措施[J]. 甘肃科技, 2014, 30(19): 32,50-51. |
Luo G, Wang J, Guo S H, et al. Fouling mechanism and preventive measures of multi effect evaporator[J]. Gansu Science and Technology, 2014, 30(19): 32, 50-51. | |
12 | Darwish M A, Al-Juwayhel F, Abdulraheim H K. Multi-effect boiling systems from an energy viewpoint[J]. Desalination, 2006, 194(1/2/3): 22-39. |
13 | 杨洛鹏, 沈胜强, 杨荣如. 低温多效蒸发海水淡化系统的变工况性能分析[J]. 热科学与技术, 2006, 5(2): 118-121. |
Yang L P, Shen S Q, Yang R R. Off design performance analysis of desalination plant with low temperature distillation[J]. Journal of Thermal Science and Technology, 2006, 5(2): 118-121. | |
14 | 丁涛, 王世昌. 基于温差函数的低温多效蒸发海水淡化过程热力学分析[J]. 化工学报, 2008, 59(5): 1077-1082. |
Ding T, Wang S C. Thermodynamic analysis of LT-MED desalination process based on temperature difference function[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(5): 1077-1082. | |
15 | 卢涛, 陈军, 沈胜强. 低温多效蒸发海水淡化系统顺流进料工艺流程模拟及经济评估[J]. 热科学与技术, 2013, 12(3): 189-194. |
Lu T, Chen J, Shen S Q. Process simulation and economic assessment of forward feed low temperature multi-effect evaporation desalination system[J]. Journal of Thermal Science and Technology, 2013, 12(3): 189-194. | |
16 | 赵倩茹. 多效蒸发海水淡化系统的在线优化与控制[D]. 北京: 中国石油大学(北京), 2017. |
Zhao Q R. Online optimization and control low temperature seawater multi-effect distillation system[D]. Beijing: China University of Petroleum, 2017. | |
17 | 邓心茹, 李凤奇, 田鹏飞, 等. TVC-MED海水淡化装置工艺系统研究与分析[J]. 石油化工设计, 2021, 38(4): 4, 10-14. |
Deng X R, Li F Q, Tian P F, et al. Research and analysis of process system of TVC-MED seawater desalination plant[J]. Petrochemical Design, 2021, 38(4): 4, 10-14. | |
18 | 欧佳, 宋雪峰, 李梦学. 低温多效海水淡化装置中污垢的形成[J]. 黑龙江电力, 2013, 35(4): 364-367. |
Ou J, Song X F, Li M X. Formation of fouling in LT-MED desalination device[J]. Heilongjiang Electric Power, 2013, 35(4): 364-367. | |
19 | Chen C B, Luo X L, Wang T Y, et al. Minimum motive steam consumption on full cycle optimization with cumulative fouling consideration for MED-TVC desalination system[J]. Desalination, 2021, 507: 115017. |
20 | 孙小军, 庞毅, 桑俊珍, 等. 低温多效海水淡化不同进料方式的造水比研究[J]. 热力发电, 2010, 39(5): 108-112. |
Sun X J, Pang Y, Sang J Z, et al. Study on GOR for low-temperature multi-effect desalination of sea water with different water-intaking modes[J]. Thermal Power Generation, 2010, 39(5): 108-112. | |
21 | 张海春, 王海增, 阮国岭. 热法海水淡化阻垢及清洗技术研究现状[J]. 中国给水排水, 2008, 24(16): 12-16. |
Zhang H C, Wang H Z, Ruan G L. Research status of scale prevention and cleaning techniques in thermal seawater desalination[J]. China Water & Wastewater, 2008, 24(16): 12-16. | |
22 | Kumar R, Umanand L. Dynamic pressure modulation for solar desalination system[J]. Desalination, 2009, 249(1): 90-98. |
23 | 吴刚, 陈宗海, 薛美盛, 等. 建模与先进控制在多效蒸发器节能中的应用[J]. 中国科学技术大学学报, 1999(1): 30-37. |
Wu G, Chen Z H, Xue M S, et al. Experimental study of salt water modeling for smoke filling process in large space buildings[J]. Journal of University of Science and Technology of China, 1999(1): 30-37. | |
24 | 柴帅, 张健, 高伟, 等. 海水淡化装置回热器技术研究[J]. 石油化工设备技术, 2021, 42(5): 4, 8-15. |
Chai S, Zhang J, Gao W, et al. On technology of regenerator in seawater desalination device[J]. Petrochemical Equipment Technology, 2021, 42(5): 4, 8-15. | |
25 | 冯涛, 李楠, 王可宁, 等. 低温多效蒸馏海水淡化控制系统的设计与实现[J]. 盐科学与化工, 2022, 51(3): 8-11. |
Feng T, Li N, Wang K N, et al. Design and realization of low temperature multi-effect distillation seawater desalination control system[J]. Journal of Salt Science and Chemical Industry, 2022, 51(3): 8-11. | |
26 | Zhou S H, Liu X Y, Zhang K C, et al. Evaluation of a novel ammonia-water based combined cooling, desalination and power system based on thermodynamic and exergoeconomic analyses[J]. Energy Conversion and Management, 2021, 239: 114176. |
27 | 肖轶文, 吴淑英, 彭德其, 等. 多效蒸发注射用水系统的热力过程优化[J]. 过程工程学报, 2022, 22(7): 917-926. |
Xiao Y W, Wu S Y, Peng D Q, et al. Thermodynamic processes optimization of multiple effect evaporation system of water for injection[J]. The Chinese Journal of Process Engineering, 2022, 22(7): 917-926. | |
28 | 鲍克勤, 刘擘, 汤豪. 基于LADRC的低温多效海水淡化温度控制[J]. 昆明理工大学学报(自然科学版), 2022, 47(1): 38-45. |
Bao K Q, Liu B, Tang H. Temperature control of low temperature multi-effect seawater desalination based on LADRC[J]. Journal of Kunming University of Science and Technology (Natural Sciences), 2022, 47(1): 38-45. | |
29 | El-Dessouky H T, Ettouney H M, Mandani F. Performance of parallel feed multiple effect evaporation system for seawater desalination[J]. Applied Thermal Engineering, 2000, 20(17): 1679-1706. |
30 | 孙德计, 齐庆利, 丁涛. 低温多效海水淡化物料水温度对装置造水比的影响[J]. 自动化应用, 2015(5): 9-10, 17. |
Sun D J, Qi Q L, Ding T. Influence of seawater temperature on the water production ratio in the LT-MED process[J]. Automation Application, 2015(5): 9-10, 17. | |
31 | Liu H L, Song L L, Shao L, et al. Design of LT-MED seawater desalination temperature control system based on dynamic matrix predictive fuzzy PID control algorithm[C]//2018 IEEE International Conference on Mechatronics and Automation. Changchun: IEEE, 2018: 293-297. |
[1] | Tianyuan WANG, Chunbo CHEN, Lin SUN, Xionglin LUO. Optimal design of slow-time-varying system for multi-effect distillation desalination based on full-cycle slow fouling [J]. CIESC Journal, 2022, 73(2): 759-769. |
[2] | XU Jianwei, LIANG Yingzong, LUO Xianglong, CHEN Jianyong, YANG Zhi, CHEN Ying. Integration and analysis of PRICO-membrane distillation seawater desalination system [J]. CIESC Journal, 2021, 72(S1): 437-444. |
[3] | JIA Xiaoping, SHI Lei, YANG Youqi. Challenges of eco-industrial parks development and opportunities for process systems engineering [J]. CIESC Journal, 2021, 72(5): 2373-2391. |
[4] | XIE Fuming, XU Feng, LUO Xionglin. Influence analysis of process scheduling on optimized operation strategy of acetylene hydrogenation reactor [J]. CIESC Journal, 2021, 72(5): 2718-2726. |
[5] | Chunbo CHEN, Xionglin LUO, Lin SUN. Time-varying analysis of feasible region and full-cycle operating optimization in multi-effect distillation seawater desalination system [J]. CIESC Journal, 2021, 72(11): 5686-5695. |
[6] | Ming TAN, Wenguang WANG, Xiaodong ZHANG, Hongwu ZHAO, Yang ZHANG, Xingtao YANG. Forward-osmosis strategy and chemical cleaning of seawater desalination reverse osmosis membranes [J]. CIESC Journal, 2020, 71(S2): 306-313. |
[7] | Wenguang WANG, Ming TAN, Xiaohan SUN, Xingtao YANG, Xiaodong ZHANG, Yang ZHANG, Hongwu ZHAO. Ultrafiltration membrane cleaning technology and mechanism based on seawater desalination pilot equipment [J]. CIESC Journal, 2020, 71(S2): 289-296. |
[8] | WANG Pan, ZHAO Jie, CHEN Huayan, LÜ Xiaolong. Heat and mass transfer in osmotic distillation [J]. CIESC Journal, 2014, 65(8): 2889-2895. |
[9] | XIE Lixin1,2,3,ZHOU Wenmeng1,2,3,CHEN Fei1,2,3. Study on heat-transfer performance of horizontal tube falling film evaporator [J]. Chemical Industry and Engineering Progree, 2014, 33(11): 2878-2881. |
[10] | QI Chunhua, XING Yulei, KANG Quan, XU Ke, FENG Houjun. Pilot test of a 30 t·d-1 desalination device with multi-effect and operated at low temperature by evaporating seawater [J]. CIESC Journal, 2013, 64(8): 3023-3030. |
[11] | WANG Shuxun,ZHAO Jin,ZHANG Yushan,WANG Jing. Comparative test between fiber filtering and sand filtering [J]. Chemical Industry and Engineering Progree, 2013, 32(08): 1939-1942. |
[12] | LIU Luofeng1,2,ZHANG Yushan2,HUANG Xiping2,ZHANG Jiakai2,ZHANG Hongwei1. Research progress of multipurpose utilization technologies of brine from seawater desalination plant [J]. Chemical Industry and Engineering Progree, 2013, 32(02): 446-452. |
[13] | GONG Kailei1,2,WANG Dewu1,LIU Yan2,ZHANG Shaofeng2. Effects of solid particles on experimental concentration factor of seawater desalination and film heat transfer coefficient in fluidized bed with multi-phase evaporation [J]. CIESC Journal, 2012, 63(8): 2392-2397. |
[14] | XIE Lixin,TIAN Zhiguo. Removing copper ion from seawater with redox method [J]. Chemical Industry and Engineering Progree, 2012, 31(09): 1899-1902. |
[15] | MA Xuehu,LAN Zhong,WANG Sifang,LI Lu. Impact of discharges in seawater desalination on marine environment and progress of zero liquid discharge [J]. , 2011, 30(1): 233-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||