CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5461-5468.DOI: 10.11949/0438-1157.20221081
• Process system engineering • Previous Articles Next Articles
Shuping QI(), Wenlong WANG, Lei ZHANG(), Jian DU
Received:
2022-07-30
Revised:
2022-09-23
Online:
2023-01-17
Published:
2022-12-05
Contact:
Lei ZHANG
通讯作者:
张磊
作者简介:
齐书平(1997—),女,硕士研究生,1137272405@qq.com
基金资助:
CLC Number:
Shuping QI, Wenlong WANG, Lei ZHANG, Jian DU. A deep learning-based model for predicting the stability constants of metal ions with organic ligands[J]. CIESC Journal, 2022, 73(12): 5461-5468.
齐书平, 王文龙, 张磊, 都健. 基于深度学习的金属离子-有机配体配位稳定常数的预测[J]. 化工学报, 2022, 73(12): 5461-5468.
Add to citation manager EndNote|Ris|BibTeX
序号 | 原子特征 | 编码 | 序号 | 原子特征 | 编码 | 序号 | 键特征 | 编码 |
---|---|---|---|---|---|---|---|---|
0~11 | 原子序数① | 独热 | 37 | 是否在环上① | 独热 | 44~47 | 键类型① | 数值 |
12~15 | 总氢数① | 独热 | 38 | Gasteiger电荷② | 数值 | 48 | 是否共轭① | 数值 |
16~22 | 显式化合价① | 独热 | 39 | Gasteiger氢电荷② | 数值 | 49~50 | 键方向① | 数值 |
23~25 | 形式电荷① | 独热 | 40 | Crippen摩尔折射率② | 数值 | 51~52 | 键构型① | 数值 |
26~32 | 杂化方式① | 独热 | 41 | Crippen logP② | 数值 | 53 | 立体键① | 数值 |
33~35 | 手性① | 独热 | 42 | TPSA② | 数值 | |||
36 | 芳香性① | 独热 | 43 | LabuteASAContribs② | 数值 |
Table 1 Features and coding methods of atoms and bonds in molecular attribute diagrams
序号 | 原子特征 | 编码 | 序号 | 原子特征 | 编码 | 序号 | 键特征 | 编码 |
---|---|---|---|---|---|---|---|---|
0~11 | 原子序数① | 独热 | 37 | 是否在环上① | 独热 | 44~47 | 键类型① | 数值 |
12~15 | 总氢数① | 独热 | 38 | Gasteiger电荷② | 数值 | 48 | 是否共轭① | 数值 |
16~22 | 显式化合价① | 独热 | 39 | Gasteiger氢电荷② | 数值 | 49~50 | 键方向① | 数值 |
23~25 | 形式电荷① | 独热 | 40 | Crippen摩尔折射率② | 数值 | 51~52 | 键构型① | 数值 |
26~32 | 杂化方式① | 独热 | 41 | Crippen logP② | 数值 | 53 | 立体键① | 数值 |
33~35 | 手性① | 独热 | 42 | TPSA② | 数值 | |||
36 | 芳香性① | 独热 | 43 | LabuteASAContribs② | 数值 |
序号 | 配体 | 金属离子 | 配位态 | lgK预测值 | lgK DFT计算值 | lgK实验值 | 绝对误差 |
---|---|---|---|---|---|---|---|
1[ | Mn2+ | 单配位 | 7.52 | 48.65 | 7.60 | 0.08 | |
Fe2+ | 单配位 | 8.64 | 51.95 | 8.70 | 0.06 | ||
Co2+ | 单配位 | 9.52 | 55.19 | 10.00 | 0.48 | ||
Ni2+ | 单配位 | 9.80 | 63.96 | 10.90 | 1.10 | ||
2[ | Ni2+ | 单配位 | 12.10 | 7.94 | 11.51 | 0.59 | |
3[ | Ni2+ | 单配位 | 13.24 | 16.78 | 17.95 | 4.71 | |
Co2+ | 单配位 | 13.65 | 14.05 | 15.41 | 1.76 |
Table 2 Comparison of model prediction results and DFT calculation results with experimental values
序号 | 配体 | 金属离子 | 配位态 | lgK预测值 | lgK DFT计算值 | lgK实验值 | 绝对误差 |
---|---|---|---|---|---|---|---|
1[ | Mn2+ | 单配位 | 7.52 | 48.65 | 7.60 | 0.08 | |
Fe2+ | 单配位 | 8.64 | 51.95 | 8.70 | 0.06 | ||
Co2+ | 单配位 | 9.52 | 55.19 | 10.00 | 0.48 | ||
Ni2+ | 单配位 | 9.80 | 63.96 | 10.90 | 1.10 | ||
2[ | Ni2+ | 单配位 | 12.10 | 7.94 | 11.51 | 0.59 | |
3[ | Ni2+ | 单配位 | 13.24 | 16.78 | 17.95 | 4.71 | |
Co2+ | 单配位 | 13.65 | 14.05 | 15.41 | 1.76 |
1 | Lawrance G A. Introduction to Coordination Chemistry[M]. Chichester, UK: John Wiley & Sons, 2010. |
2 | Martell A E, Motekaitis R J, Chen D, et al. Selection of new Fe(Ⅲ)/Fe(Ⅱ) chelating agents as catalysts for the oxidation of hydrogen sulfide to sulfur by air[J]. Canadian Journal of Chemistry, 1996, 74(10): 1872-1879. |
3 | Kuźnik N, Wyskocka M. Iron(Ⅲ) contrast agent candidates for MRI: a survey of the structure-effect relationship in the last 15 years of studies[J]. European Journal of Inorganic Chemistry, 2016, 2016(4): 445-458. |
4 | Checa-Fernandez A, Santos A, Romero A, et al. Application of chelating agents to enhance Fenton process in soil remediation: a review[J]. Catalysts, 2021, 11(6): 722. |
5 | Wilson A M, Bailey P J, Tasker P A, et al. Solvent extraction: the coordination chemistry behind extractive metallurgy[J]. Chemical Society Reviews, 2014, 43(1): 123-134. |
6 | Gaur K, Pérez Otero S C, Benjamín-Rivera J A, et al. Iron chelator transmetalative approach to inhibit human ribonucleotide reductase[J]. Journal of the American Chemistry Society Au, 2021, 1(6): 865-878. |
7 | Sheikh T A, Arshad M N, Rahman M M, et al. Trace electrochemical detection of Ni2+ ions with bidentate N,N'(ethane-1,2-diyl)bis(3,4-dimethoxybenzenesulfonamide)[EDBDMBS] as a chelating agent[J]. Inorganica Chimica Acta, 2017, 464: 157-166. |
8 | Solov'ev V, Marcou G, Tsivadze A, et al. Complexation of Mn2+, Fe2+, Y3+, La3+, Pb2+, and UO2 2+ with organic ligands: QSPR ensemble modeling of stability constants[J]. Industrial & Engineering Chemistry Research, 2012, 51(41): 13482-13489. |
9 | Solov'ev V P, Varnek A, Wipff G. Modeling of ion complexation and extraction using substructural molecular fragments[J]. Journal of Chemical Information and Computer Sciences, 2000, 40(3): 847-858. |
10 | Solov'ev V, Sukhno I, Buzko V, et al. Stability constants of complexes of Zn2+, Cd2+, and Hg2+ with organic ligands: QSPR consensus modeling and design of new metal binders[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 72(3/4): 309-321. |
11 | Solov'ev V P, Tsivadze A Y, Varnek A A. New approach for accurate QSPR modeling of metal complexation: application to stability constants of complexes of lanthanide ions Ln3+, Ag+, Zn2+, Cd2+ and Hg2+ with organic ligands in water[J]. Macroheterocycles, 2012, 5(4/5): 404-410. |
12 | Solov'ev V P, Kireeva N, Tsivadze A Y, et al. QSPR ensemble modelling of alkaline-earth metal complexation[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 76(1/2): 159-171. |
13 | Varnek A, Solov’ev V. Quantitative structure-property relationships in solvent extraction and complexation of metals[M]//Ion Exchange and Solvent Extraction Series. Florida, USA: CRC Press, 2009: 319-358. |
14 | Solov'ev V, Varnek A, Tsivadze A. QSPR ensemble modelling of the 1∶1 and 1∶2 complexation of Co²⁺, Ni²⁺, and Cu²⁺ with organic ligands: relationships between stability constants[J]. Journal of Computer-Aided Molecular Design, 2014, 28(5): 549-564. |
15 | Solov'ev V, Kireeva N, Ovchinnikova S, et al. The complexation of metal ions with various organic ligands in water: prediction of stability constants by QSPR ensemble modelling[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 83(1/2): 89-101. |
16 | Mitrofanov A A, Matveev P I, Yakubova K V, et al. Deep learning insights into lanthanides complexation chemistry[J]. Molecules (Basel, Switzerland), 2021, 26(11): 3237. |
17 | 肖琰, 曹晨忠. 过渡金属-二芳基希夫碱配位稳定常数的QSPR研究[J]. 化学研究与应用, 2020, 32(5): 782-788. |
Xiao Y, Cao C Z. QSPR study of the stability constant of the complexes involving bi-aryl Schiff bases reacting with transition metals[J]. Chemical Research and Application, 2020, 32(5): 782-788. | |
18 | Chaube S, Srinivasan S G, Rai B. Applied machine learning for predicting the lanthanide-ligand binding affinities[J]. Scientific Reports, 2020, 10: 14322. |
19 | Velickovic P, Cucurull G, Casanova A, et al. Graph attention networks[EB/OL]. 2018. . |
20 | 梁春余, 杨家振, 刘祁涛. 支持电解质和离子强度对溶液中配合物稳定性的影响(Ⅲ): Pitzer理论在确定配合物热力学稳定常数中的应用[J]. 化学学报, 1986, 44(3): 213-219. |
Liang C Y, Yang J Z, Liu Q T. The influence of ionic strength and supporting electrolytes on the stability of complexes in solutions(Ⅲ): The application of Pitzer's equation to determine the thermodynamic stability constant of complexes[J]. Acta Chimica Sinica, 1986, 44(3): 213-219. | |
21 | Pettit L. The IUPAC stability constants database[J]. Chemistry International, 2006, 28: 14-15. |
22 | Wang M Y. Deep graph library: towards efficient and scalable deep learning on graphs[C]//ICLR Workshop on Representation Learning on Graphs and Manifolds. ICLR, 2019. |
23 | RDKit: open-source cheminformatics software[CP/OL]. [2020-10-26]. . |
24 | Coley C W, Barzilay R, Green W H, et al. Convolutional embedding of attributed molecular graphs for physical property prediction[J]. Journal of Chemical Information and Modeling, 2017, 57(8): 1757-1772. |
25 | Imambi S, Prakash K B, Kanagachidambaresan G R. PyTorch[M]//Programming with TensorFlow. Cham: Springer International Publishing, 2021: 87-104. |
26 | Abadi M, Barham P, Chen J, et al. TensorFlow: a system for large-scale machine learning[C]//12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). Atlanta, Georgia, USA: USENIX Association, 2016. |
27 | Mechachti F, Lakehal S, Lakehal A, et al. Predicted structure and selectivity of 3d transition metal complexes with glutamic N, N-bis(carboxymethyl) acid[J]. New Journal of Chemistry, 2021, 45(39): 18366-18378. |
28 | Chauhan G, Stein M, Seidel-Morgenstern A, et al. The thermodynamics and biodegradability of chelating agents upon metal extraction[J]. Chemical Engineering Science, 2015, 137: 768-785. |
29 | Ridzwan M H, Yaakob M K, Zabidi Z M, et al. Computational insight into the quantum chemistry, interaction and adsorption energy of aminopolycarboxylic acid chelating agents towards metal cations[J]. Computational and Theoretical Chemistry, 2022, 1208: 113579. |
30 | Cassone G, Chillè D, Giacobello F, et al. Interaction between AS(Ⅲ) and simple thioacids in water: an experimental and ab initio molecular dynamics investigation[J]. The Journal of Physical Chemistry B, 2019, 123(28): 6090-6098. |
[1] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[2] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[3] | Limin WANG, Shuyu GUO, Xing XIANG, Shaotong FU. Research progress of energy-minimization multi-scale method for turbulent system [J]. CIESC Journal, 2022, 73(6): 2415-2426. |
[4] | Jiayi WANG, Chuigang FAN, Songgeng LI. Role of carbon-oxygen complexes on low temperature reduction of NO by coal char [J]. CIESC Journal, 2022, 73(5): 2140-2148. |
[5] | Hongrui ZHANG, Tian ZHANG, Xizi LONG, Xianning LI. Degradation characteristics of Cu-EDTA by coupling of photocatalysis and microbial fuel cell [J]. CIESC Journal, 2022, 73(5): 2149-2157. |
[6] | WANG Zhi, LI Yanqing, ZHUANG Wei, CHEN Zhen, LIU Jinle, LIU Dong, ZHAO Anqi, LYU Yongkun, XIONG Wenlong, XU Jingliang, YING Hanjie. Research advances in feed application of polysaccharide trace element complexes [J]. CIESC Journal, 2021, 72(7): 3478-3487. |
[7] | YANG Yuanyuan, WANG Jinzhi, DU Junzhe, DU Aobing, ZHAO Jingwen, CUI Guanglei. Role of magnesium-chlorine solvation structures in magnesium electrolytes [J]. CIESC Journal, 2021, 72(6): 3116-3129. |
[8] | XIE Haoyuan, HUANG Qunxing, LIN Xiaoqing, LI Xiaodong, YAN Jianhua. Study on the calorific value prediction of municipal solid wastes by image deep learning [J]. CIESC Journal, 2021, 72(5): 2773-2782. |
[9] | CHEN Zhongsheng, ZHU Meiyu, HE Yanlin, XU Yuan, ZHU Qunxiong. Quantile regression CGAN based virtual samples generation and its applications to process modeling [J]. CIESC Journal, 2021, 72(3): 1529-1538. |
[10] | YU Chengyuan, WU Jinkui, ZHOU Li, JI Xu, DAI Yiyang, DANG Yagu. Prediction of energy conversion efficiency of organic solar cells based on deep learning [J]. CIESC Journal, 2021, 72(3): 1487-1495. |
[11] | TAN Fangyuan, LI Kangkang, YU Hai, JIANG Kaiqi, HAN Yueheng, WANG Xiaolong, ZHAI Rongrong, LI Yulong, CHEN Jian. Metal ions mediated amine-based post-combustion CO2 capture [J]. CIESC Journal, 2021, 72(2): 1026-1035. |
[12] | Runxia CAI, Fanxing LI. Tailoring the thermodynamic properties of complex oxides for thermochemical air separation and beyond [J]. CIESC Journal, 2021, 72(12): 6122-6130. |
[13] | Xiaohui WANG, Yanjiang WANG, Xiaogang DENG, Zheng ZHANG. Industrial process fault detection using weighted deep support vector data description [J]. CIESC Journal, 2021, 72(11): 5707-5716. |
[14] | Linzi YIN, Yuyin GUAN, Zhaohui JIANG, Xuemei XU. Optimal method of selecting silicon content data in blast furnace hot metal based on k-means++ [J]. CIESC Journal, 2020, 71(8): 3661-3670. |
[15] | Ruiyang SUN, Yingzhou LU, Hong MENG, Chunxi LI. Efficient adsorption of DBT from model oil by the nitrified thiophenic sulfides via complexation thereof [J]. CIESC Journal, 2020, 71(5): 2256-2264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||