CIESC Journal ›› 2023, Vol. 74 ›› Issue (5): 2111-2122.DOI: 10.11949/0438-1157.20221582
• Biochemical engineering and technology • Previous Articles Next Articles
Chunlei ZHAO1,2(), Liang GUO1,2, Cong GAO1,2, Wei SONG3, Jing WU3, Jia LIU1,2, Liming LIU1,2, Xiulai CHEN1,2()
Received:
2022-12-08
Revised:
2023-02-17
Online:
2023-06-29
Published:
2023-05-05
Contact:
Xiulai CHEN
赵春雷1,2(), 郭亮1,2, 高聪1,2, 宋伟3, 吴静3, 刘佳1,2, 刘立明1,2, 陈修来1,2()
通讯作者:
陈修来
作者简介:
赵春雷(1997—),男,硕士研究生,1972630117@qq.com
基金资助:
CLC Number:
Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production[J]. CIESC Journal, 2023, 74(5): 2111-2122.
赵春雷, 郭亮, 高聪, 宋伟, 吴静, 刘佳, 刘立明, 陈修来. 代谢工程改造大肠杆菌生产软骨素[J]. 化工学报, 2023, 74(5): 2111-2122.
Add to citation manager EndNote|Ris|BibTeX
质粒 | 描述 | 来源 |
---|---|---|
pEM | T5 promoter, AmpR, f1 ori | 实验室储存 |
pCDR | Trc promoter, StrR, CloDF13 ori | 实验室储存 |
pEM-kfoA | pEM连接基因kfoA | 本研究构建 |
pCDR-kfoF | pCDR连接基因kfoF | 本研究构建 |
pEM-RBSL | pEM使用低表达强度RBS | 本研究构建 |
pEM-RBSM | pEM使用中表达强度RBS | 本研究构建 |
pEM-RBSH | pEM使用高表达强度RBS | 本研究构建 |
pCDR-kfoF-kfoC-kfoA | pCDR连接基因kfoA、kfoC、kfoF | 本研究构建 |
pEM-RBSL-glmS | pEM连接低表达强度的glmS基因 | 本研究构建 |
pEM-RBSM-glmS | pEM连接中表达强度的glmS基因 | 本研究构建 |
pEM-RBSH-glmS | pEM连接高表达强度的glmS基因 | 本研究构建 |
pEM-RBSL-glmM | pEM连接低表达强度的glmM基因 | 本研究构建 |
pEM-RBSM-glmM | pEM连接中表达强度的glmM基因 | 本研究构建 |
pEM-RBSH-glmM | pEM连接高表达强度的glmM基因 | 本研究构建 |
pEM-RBSL-kfoF | pEM连接低表达强度的kfoF基因 | 本研究构建 |
pEM-RBSM-kfoF | pEM连接中表达强度的kfoF基因 | 本研究构建 |
pEM-RBSH-kfoF | pEM连接高表达强度的kfoF基因 | 本研究构建 |
Table 1 Plasmids used in the study
质粒 | 描述 | 来源 |
---|---|---|
pEM | T5 promoter, AmpR, f1 ori | 实验室储存 |
pCDR | Trc promoter, StrR, CloDF13 ori | 实验室储存 |
pEM-kfoA | pEM连接基因kfoA | 本研究构建 |
pCDR-kfoF | pCDR连接基因kfoF | 本研究构建 |
pEM-RBSL | pEM使用低表达强度RBS | 本研究构建 |
pEM-RBSM | pEM使用中表达强度RBS | 本研究构建 |
pEM-RBSH | pEM使用高表达强度RBS | 本研究构建 |
pCDR-kfoF-kfoC-kfoA | pCDR连接基因kfoA、kfoC、kfoF | 本研究构建 |
pEM-RBSL-glmS | pEM连接低表达强度的glmS基因 | 本研究构建 |
pEM-RBSM-glmS | pEM连接中表达强度的glmS基因 | 本研究构建 |
pEM-RBSH-glmS | pEM连接高表达强度的glmS基因 | 本研究构建 |
pEM-RBSL-glmM | pEM连接低表达强度的glmM基因 | 本研究构建 |
pEM-RBSM-glmM | pEM连接中表达强度的glmM基因 | 本研究构建 |
pEM-RBSH-glmM | pEM连接高表达强度的glmM基因 | 本研究构建 |
pEM-RBSL-kfoF | pEM连接低表达强度的kfoF基因 | 本研究构建 |
pEM-RBSM-kfoF | pEM连接中表达强度的kfoF基因 | 本研究构建 |
pEM-RBSH-kfoF | pEM连接高表达强度的kfoF基因 | 本研究构建 |
菌株 | 描述 | 来源 |
---|---|---|
E. coli JM109 | Wild-type E. coli strain | 实验室储存 |
E. coli BL21 STAR (DE3)(简称STAR) | Wild-type E. coli strain | Addgene公司购买 |
E. coli GZ00 | STAR带有重组质粒pCDR-kfoF-kfoC-kfoA | 本研究构建 |
E. coli GZ01 | STAR基因组整合kfoF-kfoC-kfoA | 本研究构建 |
E. coli GZ02 | GZ00带有重组质粒pEM-RBSL-glmS | 本研究构建 |
E. coli GZ03 | GZ00带有重组质粒pEM-RBSM-glmS | 本研究构建 |
E. coli GZ04 | GZ00带有重组质粒pEM-RBSH-glmS | 本研究构建 |
E. coli GZ05 | GZ01增加一个拷贝glmS | 本研究构建 |
E. coli GZ06 | GZ01增加两个拷贝glmS | 本研究构建 |
E. coli GZ07 | GZ01增加三个拷贝glmS | 本研究构建 |
E. coli GZ08 | GZ00带有重组质粒pEM-RBSL-glmM | 本研究构建 |
E. coli GZ09 | GZ00带有重组质粒pEM-RBSM-glmM | 本研究构建 |
E. coli GZ10 | GZ00带有重组质粒pEM-RBSH-glmM | 本研究构建 |
E. coli GZ11 | GZ06增加一个拷贝glmM | 本研究构建 |
E. coli GZ12 | GZ06增加两个拷贝glmM | 本研究构建 |
E. coli GZ13 | GZ06增加三个拷贝glmM | 本研究构建 |
E. coli GZ14 | GZ00带有重组质粒pEM-RBSL-kfoF | 本研究构建 |
E. coli GZ15 | GZ00带有重组质粒pEM-RBSM-kfoF | 本研究构建 |
E. coli GZ16 | GZ00带有重组质粒pEM-RBSH-kfoF | 本研究构建 |
E. coli GZ17 | GZ12增加一个拷贝kfoF | 本研究构建 |
E. coli GZ18 | GZ12增加两个拷贝kfoF | 本研究构建 |
Table 2 Strains used in the study
菌株 | 描述 | 来源 |
---|---|---|
E. coli JM109 | Wild-type E. coli strain | 实验室储存 |
E. coli BL21 STAR (DE3)(简称STAR) | Wild-type E. coli strain | Addgene公司购买 |
E. coli GZ00 | STAR带有重组质粒pCDR-kfoF-kfoC-kfoA | 本研究构建 |
E. coli GZ01 | STAR基因组整合kfoF-kfoC-kfoA | 本研究构建 |
E. coli GZ02 | GZ00带有重组质粒pEM-RBSL-glmS | 本研究构建 |
E. coli GZ03 | GZ00带有重组质粒pEM-RBSM-glmS | 本研究构建 |
E. coli GZ04 | GZ00带有重组质粒pEM-RBSH-glmS | 本研究构建 |
E. coli GZ05 | GZ01增加一个拷贝glmS | 本研究构建 |
E. coli GZ06 | GZ01增加两个拷贝glmS | 本研究构建 |
E. coli GZ07 | GZ01增加三个拷贝glmS | 本研究构建 |
E. coli GZ08 | GZ00带有重组质粒pEM-RBSL-glmM | 本研究构建 |
E. coli GZ09 | GZ00带有重组质粒pEM-RBSM-glmM | 本研究构建 |
E. coli GZ10 | GZ00带有重组质粒pEM-RBSH-glmM | 本研究构建 |
E. coli GZ11 | GZ06增加一个拷贝glmM | 本研究构建 |
E. coli GZ12 | GZ06增加两个拷贝glmM | 本研究构建 |
E. coli GZ13 | GZ06增加三个拷贝glmM | 本研究构建 |
E. coli GZ14 | GZ00带有重组质粒pEM-RBSL-kfoF | 本研究构建 |
E. coli GZ15 | GZ00带有重组质粒pEM-RBSM-kfoF | 本研究构建 |
E. coli GZ16 | GZ00带有重组质粒pEM-RBSH-kfoF | 本研究构建 |
E. coli GZ17 | GZ12增加一个拷贝kfoF | 本研究构建 |
E. coli GZ18 | GZ12增加两个拷贝kfoF | 本研究构建 |
菌株 | OD600 | CH/ (mg/L) | CH对细胞得率/ (mg/g) | CH对甘油得率/ (mg/g) |
---|---|---|---|---|
GZ01 | 11.0 | 7.1 | 1.6 | 0.5 |
GZ05 | 11.2 | 29.9 | 6.5 | 2.0 |
GZ06 | 11.8 | 46.2 | 9.5 | 3.1 |
GZ07 | 11.2 | 45.1 | 9.8 | 3.0 |
GZ11 | 12.2 | 54.4 | 10.8 | 3.6 |
GZ12 | 12.8 | 80.1 | 15.2 | 5.3 |
GZ13 | 12.2 | 79.9 | 15.9 | 5.3 |
GZ17 | 12.1 | 108.8 | 21.8 | 7.3 |
GZ18 | 11.6 | 70.7 | 14.8 | 4.7 |
Table 3 Comparison of fermentation parameters of chondroitin synthesis strains
菌株 | OD600 | CH/ (mg/L) | CH对细胞得率/ (mg/g) | CH对甘油得率/ (mg/g) |
---|---|---|---|---|
GZ01 | 11.0 | 7.1 | 1.6 | 0.5 |
GZ05 | 11.2 | 29.9 | 6.5 | 2.0 |
GZ06 | 11.8 | 46.2 | 9.5 | 3.1 |
GZ07 | 11.2 | 45.1 | 9.8 | 3.0 |
GZ11 | 12.2 | 54.4 | 10.8 | 3.6 |
GZ12 | 12.8 | 80.1 | 15.2 | 5.3 |
GZ13 | 12.2 | 79.9 | 15.9 | 5.3 |
GZ17 | 12.1 | 108.8 | 21.8 | 7.3 |
GZ18 | 11.6 | 70.7 | 14.8 | 4.7 |
发酵参数 | E. coli GZ01 | E. coli GZ17 |
---|---|---|
起始OD600 | 0.47 | 0.45 |
最终OD600 | 57.00 | 76.00 |
软骨素产量/(g/L) | 0.31 | 2.95 |
软骨素对细胞得率/(mg/g) | 13.20 | 94.20 |
软骨素对甘油得率/(mg/g) | 2.25 | 13.41 |
生产强度/(mg/(L·h)) | 6.20 | 59.00 |
Table 4 Analysis of fermentation results of E. coli GZ01 and E. coli GZ17
发酵参数 | E. coli GZ01 | E. coli GZ17 |
---|---|---|
起始OD600 | 0.47 | 0.45 |
最终OD600 | 57.00 | 76.00 |
软骨素产量/(g/L) | 0.31 | 2.95 |
软骨素对细胞得率/(mg/g) | 13.20 | 94.20 |
软骨素对甘油得率/(mg/g) | 2.25 | 13.41 |
生产强度/(mg/(L·h)) | 6.20 | 59.00 |
1 | Laezza A, Iadonisi A, de Castro C, et al. Chemical fucosylation of a polysaccharide: a semisynthetic access to fucosylated chondroitin sulfate[J]. Biomacromolecules, 2015, 16(7): 2237-2245. |
2 | Zhang X, Liu H Y, Yao W, et al. Semisynthesis of chondroitin sulfate oligosaccharides based on the enzymatic degradation of chondroitin[J]. The Journal of Organic Chemistry, 2019, 84(11): 7418-7425. |
3 | Legendre F, Bauge C, Roche R, et al. Chondroitin sulfate modulation of matrix and inflammatory gene expression in IL-1β-stimulated chondrocytes—study in hypoxic alginate bead cultures[J]. Osteoarthritis and Cartilage, 2008, 16(1): 105-114. |
4 | Maruyama T, Toida T, Imanari T, et al. Conformational changes and anticoagulant activity of chondroitin sulfate following its O-sulfonation[J]. Carbohydrate Research, 1998, 306(1/2): 35-43. |
5 | Martins J R M, Gadelha M E C, Fonseca S M, et al. Patients with head and neck tumors excrete a chondroitin sulfate with a low degree of sulfation: a new tool for diagnosis and follow-up of cancer therapy[J]. Otolaryngology-Head and Neck Surgery, 2000, 122(1): 115-118. |
6 | Volpi N. Chondroitin sulfate safety and quality[J]. Molecules, 2019, 24(8): 1447. |
7 | Couto M R, Rodrigues J L, Rodrigues L R. Heterologous production of chondroitin[J]. Biotechnology Reports, 2022, 33: e00710. |
8 | Shi Y G, Meng Y C, Li J R, et al. Chondroitin sulfate: extraction, purification, microbial and chemical synthesis[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(10): 1445-1465. |
9 | Abdallah M M, Fernandez N, Matias A A, et al. Hyaluronic acid and chondroitin sulfate from marine and terrestrial sources: extraction and purification methods[J]. Carbohydrate Polymers, 2020, 243: 116441. |
10 | Xu S Q, Qiu M L, Zhang Q, et al. Chain structure and immunomodulatory activity of a fructosylated chondroitin from an engineered Escherichia coli K4[J]. International Journal of Biological Macromolecules, 2019, 133: 702-711. |
11 | Badri A, Williams A, Awofiranye A, et al. Complete biosynthesis of a sulfated chondroitin in Escherichia coli [J]. Nature Communications, 2021, 12: 1389. |
12 | Kobayashi S, Morii H, Itoh R, et al. Enzymatic polymerization to artificial hyaluronan: a novel method to synthesize a glycosaminoglycan using a transition state analogue monomer[J]. Journal of the American Chemical Society, 2001, 123(47): 11825-11826. |
13 | Li J E, Sparkenbaugh E M, Su G W, et al. Enzymatic synthesis of chondroitin sulfate E to attenuate bacteria lipopolysaccharide-induced organ damage[J]. ACS Central Science, 2020, 6(7): 1199-1207. |
14 | Li J E, Su G W, Liu J. Enzymatic synthesis of homogeneous chondroitin sulfate oligosaccharides[J]. Angewandte Chemie, 2017, 56(39): 11784-11787. |
15 | Sugiura N, Shimokata S, Minamisawa T, et al. Sequential synthesis of chondroitin oligosaccharides by immobilized chondroitin polymerase mutants[J]. Glycoconjugate Journal, 2008, 25(6): 521-530. |
16 | Gottschalk J, Zaun H, Eisele A, et al. Key factors for A one-pot enzyme cascade synthesis of high molecular weight hyaluronic acid[J]. International Journal of Molecular Sciences, 2019, 20(22): 5664. |
17 | Zhang Q, Yao R, Chen X L, et al. Enhancing fructosylated chondroitin production in Escherichia coli K4 by balancing the UDP-precursors[J]. Metabolic Engineering, 2018, 47: 314-322. |
18 | Bedini E, De Castro C, De Rosa M, et al. A microbiological-chemical strategy to produce chondroitin sulfate A, C[J]. Angewandte Chemie, 2011, 50(27): 6160-6163. |
19 | Cimini D, Restaino O F, Catapano A, et al. Production of capsular polysaccharide from Escherichia coli K4 for biotechnological applications[J]. Applied Microbiology and Biotechnology, 2010, 85(6): 1779-1787. |
20 | Restaino O F, Cimini D, De Rosa M, et al. High-performance CE of Escherichia coli K4 cell surface polysaccharides[J]. Electrophoresis, 2009, 30(22): 3877-3883. |
21 | He W Q, Fu L, Li G Y, et al. Production of chondroitin in metabolically engineered E. coli [J]. Metabolic Engineering, 2015, 27: 92-100. |
22 | Cheng F Y, Luozhong S J, Yu H M, et al. Biosynthesis of chondroitin in engineered Corynebacterium glutamicum [J]. Journal of Microbiology and Biotechnology, 2019, 29(3): 392-400. |
23 | Jin P, Zhang L P, Yuan P H, et al. Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis [J]. Carbohydrate Polymers, 2016, 140: 424-432. |
24 | Zhou Z X, Li Q, Huang H, et al. A microbial-enzymatic strategy for producing chondroitin sulfate glycosaminoglycans[J]. Biotechnology and Bioengineering, 2018, 115(6): 1561-1570. |
25 | Karim A S, Curran K A, Alper H S. Characterization of plasmid burden and copy number in Saccharomyces cerevisiae for optimization of metabolic engineering applications[J]. FEMS Yeast Research, 2013, 13(1): 107-116. |
26 | Kang C W, Lim H G, Yang J, et al. Synthetic auxotrophs for stable and tunable maintenance of plasmid copy number[J]. Metabolic Engineering, 2018, 48: 121-128. |
27 | Zhao M, Huang D, Zhang X, et al. Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway[J]. Metabolic Engineering, 2018, 47: 254-262. |
28 | Zhang C, Liu L, Teng L, et al. Metabolic engineering of Escherichia coli BL21 for biosynthesis of heparosan, a bioengineered heparin precursor[J]. Metabolic Engineering, 2012, 14(5): 521-527. |
29 | Jin X R, Zhang W J, Wang Y, et al. Biosynthesis of non-animal chondroitin sulfate from methanol using genetically engineered Pichia pastoris [J]. Green Chemistry, 2021, 23(12): 4365-4374. |
30 | Cimini D, Iacono I D, Carlino E, et al. Engineering S. equi subsp. zooepidemicus towards concurrent production of hyaluronic acid and chondroitin biopolymers of biomedical interest[J]. AMB Express, 2017, 7(1): 61. |
31 | Rouches M V, Xu Y S, Cortes L B G, et al. A plasmid system with tunable copy number[J]. Nature Communications, 2022, 13: 3908. |
32 | Lemuth K, Steuer K, Albermann C. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin[J]. Microbial Cell Factories, 2011, 10: 29. |
[1] | Xue LIU, Lijuan ZHANG, Guangrong ZHAO. Commensalistic Escherichia coli coculture for biosynthesis of daidzein [J]. CIESC Journal, 2022, 73(9): 4015-4024. |
[2] | Yukun ZHENG, Qing SUN, Zhen CHEN, Huimin YU. Progress for chemicals production via microbial cell factory: selecting several small molecules and macromolecular products as examples [J]. CIESC Journal, 2021, 72(12): 6109-6121. |
[3] | WANG Kaifeng, WANG Jinpeng, WEI Ping, JI Xiaojun. Metabolic engineering of Yarrowia lipolytica to produce fatty acids and their derivatives [J]. CIESC Journal, 2021, 72(1): 351-365. |
[4] | Yao ZHANG, Xiaoman QIU, Chengpeng CHEN, Zhuoran YU, Housheng HONG. Recent progress in microbial production of succinic acid [J]. CIESC Journal, 2020, 71(5): 1964-1975. |
[5] | Yanqin XU, Xizhi YANG, Ruoshi LUO, Yuhong HUANG, Feng HUO, Dan WANG. Application of synthetic biology in manufacture of bio-based plastics [J]. CIESC Journal, 2020, 71(10): 4520-4531. |
[6] | Tianhua CHEN, Ruosi ZHANG, Guozhen JIANG, Mingdong YAO, Hong LIU, Ying WANG, Wenhai XIAO, Yingjin YUAN. Metabolic engineering of Saccharomyces cerevisiae for pinene production [J]. CIESC Journal, 2019, 70(1): 179-188. |
[7] | ZHAO Yujia, ZHANG Genlin, ZHOU Xiaohong, LI Chun. Intelligent and fine regulation of microbial cell factory based on riboswitches [J]. CIESC Journal, 2015, 66(10): 3811-2819. |
[8] | MA Qiangqiang,ZHAO Guangrong. Research progress in L-DOPA synthesis [J]. Chemical Industry and Engineering Progree, 2013, 32(06): 1367-1371. |
[9] | YANG Wenge,CHEN Lin,LEI Ziyu,YIN Jingjing,GUAN Jun,HU Yonghong. Progress in production of ascomycin via fermentation [J]. , 2010, 29(7): 1309-. |
[10] | GUO Jiaqing, LUO Yan'e, FAN Daidi, GAO Pengfei, MA Xiaoxuan, ZHU Chenhui. Analysis of Metabolic Products by Response Surface Methodology for Production of Human-like Collagen II [J]. , 2010, 18(5): 830-836. |
[11] | WANG Zhiwen,MA Xianghui,CHEN Xun,ZHAO Xueming,CHEN Tao. Progress of metabolic engineering for production of CoQ10 by Escherichia coli [J]. , 2009, 28(5): 855-. |
[12] | GAO Pengfei, FAN Daidi, LUO Yan'e, MA Xiaoxuan, MA Pei, HUI Junfeng, ZHU Chenhui. Efficient and Comprehensive Utilization of Hemicellulose in the Corn Stover [J]. , 2009, 17(2): 350-354. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||