CIESC Journal ›› 2021, Vol. 72 ›› Issue (12): 6109-6121.DOI: 10.11949/0438-1157.20211285
• Reviews and monographs • Previous Articles Next Articles
Yukun ZHENG(),Qing SUN(),Zhen CHEN(),Huimin YU()
Received:
2021-09-06
Revised:
2021-11-08
Online:
2021-12-22
Published:
2021-12-05
Contact:
Zhen CHEN,Huimin YU
通讯作者:
陈振,于慧敏
作者简介:
郑煜堃(1996—),男,博士研究生,基金资助:
CLC Number:
Yukun ZHENG, Qing SUN, Zhen CHEN, Huimin YU. Progress for chemicals production via microbial cell factory: selecting several small molecules and macromolecular products as examples[J]. CIESC Journal, 2021, 72(12): 6109-6121.
郑煜堃, 孙青, 陈振, 于慧敏. 微生物细胞工厂生产化学品的研究进展——以几种典型小分子和大分子化学品为例[J]. 化工学报, 2021, 72(12): 6109-6121.
1 | 谭天伟, 陈必强, 张会丽, 等. 加快推进绿色生物制造 助力实现"碳中和"[J]. 化工进展, 2021, 40(3): 1137-1141. |
Tan T W, Chen B Q, Zhang H L, et al. Accelerate promotion of green bio-manufacturing to help achieve “carbon neutrality”[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1137-1141. | |
2 | Wang M M, Yu H M, Li X, et al. Single-gene regulated non-spore-forming Bacillus subtilis: construction, transcriptome responses, and applications for producing enzymes and surfactin[J]. Metabolic Engineering, 2020, 62: 235-248. |
3 | Liang Y X, Yu H M. Genetic toolkits for engineering Rhodococcus species with versatile applications[J]. Biotechnology Advances, 2021, 49: 107748. |
4 | Zhang X, Zhang X F, Li H P, et al. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool[J]. Applied Microbiology and Biotechnology, 2014, 98(12): 5387-5396. |
5 | Chao R, Yuan Y, Zhao H. Recent advances in DNA assembly technologies[J]. FEMS Yeast Research, 2015, 15(1): 1-9. |
6 | Cheng F Y, Yu H M, Stephanopoulos G. Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid[J]. Metabolic Engineering, 2019, 55: 276-289. |
7 | Arroyo-Olarte R D, Bravo Rodríguez R, Morales-Ríos E. Genome editing in bacteria: CRISPR-cas and beyond[J]. Microorganisms, 2021, 9(4): 844. |
8 | Liu Z, Dong H, Cui Y, et al. Application of different types of CRISPR/Cas-based systems in bacteria[J]. Microbial Cell Factories, 2020, 19(1): 172. |
9 | Qin Q, Ling C, Zhao Y Q, et al. CRISPR/Cas9 editing genome of extremophile Halomonas spp.[J]. Metabolic Engineering, 2018, 47: 219-229. |
10 | Hashemi A. CRISPR-Cas9/CRISPRi tools for cell factory construction in E. coli[J]. World Journal of Microbiology and Biotechnology, 2020, 36(7): 1-13. |
11 | Chen Y, Chen X Y, Du H T, et al. Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV)[J]. Metabolic Engineering, 2019, 54: 69-82. |
12 | Abudayyeh O O, Gootenberg J S, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299): aaf5573. |
13 | Mavrommati M, Daskalaki A, Papanikolaou S, et al. Adaptive laboratory evolution principles and applications in industrial biotechnology[J]. Biotechnology Advances, 2021: 107795. |
14 | Bjork S M, Joensson H N. Microfluidics for cell factory and bioprocess development[J]. Current Opinion in Biotechnology, 2019, 55: 95-102. |
15 | 芮金红. 结冷胶生产菌株代谢工程改造[D]. 呼和浩特: 内蒙古大学, 2019. |
Rui J H. Metabolic engineering modification of gellan gum production strain and its gel production performance[D]. Hohhot: Inner Mongolia University, 2019. | |
16 | Chen F Y, Jung H W, Tsuei C Y, et al. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol[J]. Cell, 2020, 182(4): 933-946. |
17 | Ruppin E, Papin J A, de Figueiredo L F, et al. Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks[J]. Current Opinion in Biotechnology, 2010, 21(4): 502-510. |
18 | Cheng F Y, Luozhong S J, Guo Z G, et al. Enhanced biosynthesis of hyaluronic acid using engineered Corynebacterium glutamicum via metabolic pathway regulation[J]. Biotechnology Journal, 2017, 12(10): 1700191. |
19 | Xu J Z, Zhang J L, Zhang W G. Antisense RNA: the new favorite in genetic research[J]. Journal of Zhejiang University-SCIENCE B, 2018, 19(10): 739-749. |
20 | Negrete A, Ng W I, Shiloach J. Glucose uptake regulation in E. coli by the small RNA SgrS: comparative analysis of E. coli K-12 (JM109 and MG1655) and E. coli B (BL21)[J]. Microbial Cell Factories, 2010, 9(1): 1-9. |
21 | Gilbert L A, Horlbeck M A, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation[J]. Cell, 2014, 159(3): 647-661. |
22 | Noh M, Yoo S M, Kim W J, et al. Gene expression knockdown by modulating synthetic small RNA expression in Escherichia coli[J]. Cell Systems, 2017, 5(4): 418-426. |
23 | Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589. |
24 | Wang Y, Wang H C, Wei L, et al. Synthetic promoter design in Escherichia coli based on a deep generative network[J]. Nucleic Acids Research, 2020, 48(12): 6403-6412. |
25 | Nakamura C E, Whited G M. Metabolic engineering for the microbial production of 1, 3-propanediol[J]. Current Opinion in Biotechnology, 2003, 14(5): 454-459. |
26 | Xu Y Z, Wu R C, Zheng Z M, et al. Influence of dhaT mutation of K. pneumoniae on 1, 3-propanediol fermentation[J]. World Journal of Microbiology and Biotechnology, 2011, 27(6): 1491-1497. |
27 | Burgard A, Burk M J, Osterhout R, et al. Development of a commercial scale process for production of 1, 4-butanediol from sugar[J]. Current Opinion in Biotechnology, 2016, 42: 118-125. |
28 | Liu Y, Cen X C, Liu D H, et al. Metabolic engineering of Escherichia coli for high-yield production of (R)-1, 3-butanediol[J]. ACS Synthetic Biology, 2021, 10(8): 1946-1955. |
29 | Li C, Gao S, Yang X F, et al. Green and sustainable succinic acid production from crude glycerol by engineered Yarrowia lipolyticavia agricultural residue based in situ fibrous bed bioreactor[J]. Bioresource Technology, 2018, 249: 612-619. |
30 | Wang D, Li Q, Song Z Y, et al. High cell density fermentation via a metabolically engineered Escherichia coli for the enhanced production of succinic acid[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(4): 512-518. |
31 | Okino S, Noburyu R, Suda M, et al. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain[J]. Applied Microbiology and Biotechnology, 2008, 81(3): 459-464. |
32 | Fu Y Q, Li S, Chen Y, et al. Enhancement of fumaric acid production by Rhizopus oryzae using a two-stage dissolved oxygen control strategy[J]. Applied Biochemistry and Biotechnology, 2010, 162(4): 1031-1038. |
33 | Li N, Zhang B, Wang Z W, et al. Engineering Escherichia coli for fumaric acid production from glycerol[J]. Bioresource Technology, 2014, 174: 81-87. |
34 | Zambanini T, Sarikaya E, Kleineberg W, et al. Efficient malic acid production from glycerol with Ustilago trichophora TZ1[J]. Biotechnology for Biofuels, 2016, 9(1): 1-8. |
35 | Jantama K, Haupt M J, Svoronos S A, et al. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate[J]. Biotechnology and Bioengineering, 2008, 99(5): 1140-1153. |
36 | Chae T U, Kim W J, Choi S, et al. Metabolic engineering of Escherichia coli for the production of 1, 3-diaminopropane, a three carbon diamine[J]. Scientific Reports, 2015, 5: 13040. |
37 | Li Z, Shen Y P, Jiang X L, et al. Metabolic evolution and a comparative omics analysis of Corynebacterium glutamicum for putrescine production[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(2): 123-139. |
38 | Kim H T, Baritugo K A, Hyun S M, et al. Development of metabolically engineered Corynebacterium glutamicum for enhanced production of cadaverine and its use for the synthesis of bio-polyamide 510[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1): 129-138. |
39 | Zhang Y, Liu D H, Chen Z. Production of C2—C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies[J]. Biotechnology for Biofuels, 2017, 10(1): 1-20. |
40 | Zhong W, Zhang Y, Wu W, et al. Metabolic engineering of a homoserine-derived non-natural pathway for the de novo production of 1, 3-propanediol from glucose[J]. ACS Synthetic Biology, 2019, 8(3): 587-595. |
41 | Li Z H, Wu Z Y, Cen X C, et al. Efficient production of 1, 3-propanediol from diverse carbohydrates via a non-natural pathway using 3-hydroxypropionic acid as an intermediate[J]. ACS Synthetic Biology, 2021, 10(3): 478-486. |
42 | Yim H, Haselbeck R, Niu W, et al. Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol[J]. Nature Chemical Biology, 2011, 7(7): 445-452. |
43 |
Kim T, Flick R, Brunzelle J, et al. Novel aldo-keto reductases for the biocatalytic conversion of 3-hydroxybutanal to 1, 3-butanediol: structural and biochemical studies[J]. Applied and Environmental Microbiology, 2017, 83(7). DOI:10.1228/aem.03172-16.
DOI |
44 | Thuy N T H, Kongkaew A, Flood A, et al. Fermentation and crystallization of succinic acid from Actinobacillus succinogenes ATCC55618 using fresh cassava root as the main substrate[J]. Bioresource Technology, 2017, 233: 342-352. |
45 |
Xiao M Y, Zhu X N, Fan F Y, et al. Osmotolerance in Escherichia coli is improved by activation of copper efflux genes or supplementation with sulfur-containing amino acids[J]. Applied and Environmental Microbiology, 2017, 83(7). DOI:10.1128/aem.03050-16.
DOI |
46 | Wendisch V F, Mindt M, Pérez-García F. Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives[J]. Applied Microbiology and Biotechnology, 2018, 102(8): 3583-3594. |
47 | Kind S, Kreye S, Wittmann C. Metabolic engineering of cellular transport for overproduction of the platform chemical 1, 5-diaminopentane in Corynebacterium glutamicum[J]. Metabolic Engineering, 2011, 13(5): 617-627. |
48 | Kind S, Jeong W K, Schröder H, et al. Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum[J]. Appl Environ Microbiol, 2010, 76(15): 5175-5180. |
49 | Kumar A S, Mody K, Jha B. Bacterial exopolysaccharides: a perception[J]. Journal of Basic Microbiology, 2007, 47(2): 103-117. |
50 | Allison D G, Sutherland I W. The role of exopolysaccharides in adhesion of freshwater bacteria[J]. Microbiology, 1987, 133(5): 1319-1327. |
51 | Solakyildirim K. Recent advances in glycosaminoglycan analysis by various mass spectrometry techniques[J]. Analytical and Bioanalytical Chemistry, 2019, 411(17): 3731-3741. |
52 | Tan D, Wang Y, Tong Y, et al. Grand challenges for industrializing polyhydroxyalkanoates (PHAs)[J]. Trends in Biotechnology, 2021, 39(9): 953-963. |
53 | Ganesh Saratale R, Cho S K, Dattatraya Saratale G, et al. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams[J]. Bioresource Technology, 2021, 325: 124685. |
54 | Zheng Y, Chen J C, Ma Y M, et al. Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction[J]. Metabolic Engineering, 2020, 58: 82-93. |
55 | Becker A, Katzen F, Pühler A, et al. Xanthan gum biosynthesis and application: a biochemical /genetic perspective[J]. Applied Microbiology and Biotechnology, 1998, 50(2): 145-152. |
56 | Jansson P E, Lindberg B, Sandford P A. Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea[J]. Carbohydrate Research, 1983, 124(1): 135-139. |
57 | Robyt J F, Kimble B K, Walseth T F. The mechanism of dextransucrase action: direction of dextran biosynthesis[J]. Archives of Biochemistry and Biophysics, 1974, 165(2): 634-640. |
58 | Ye J W, Huang W Z, Wang D S, et al. Pilot scale-up of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production by Halomonas bluephagenesis via cell growth adapted optimization process[J]. Biotechnology Journal, 2018, 13(5): 1800074. |
59 | Im J H, Song J M, Kang J H, et al. Optimization of medium components for high-molecular-weight hyaluronic acid production by Streptococcus sp. ID9102 via a statistical approach[J]. Journal of Industrial Microbiology & Biotechnology, 2009, 36(11): 1337-1344. |
60 | Takase K, Taguchi S, Doi Y. Enhanced synthesis of poly(3-hydroxybutyrate) in recombinant Escherichia coli by means of error-prone PCR mutagenesis, saturation mutagenesis, and in vitro recombination of the type Ⅱ polyhydroxyalkanoate synthase gene[J]. The Journal of Biochemistry, 2003, 133(1): 139-145. |
61 | Normi Y M, Hiraishi T, Taguchi S, et al. Site-directed saturation mutagenesis at residue F420 and recombination with another beneficial mutation of Ralstonia eutropha polyhydroxyalkanoate synthase[J]. Biotechnology Letters, 2005, 27(10): 705-712. |
62 | Sheu D S, Lee C Y. Altering the substrate specificity of polyhydroxyalkanoate synthase 1 derived from Pseudomonas putida GPo1 by localized semirandom mutagenesis[J]. J. Bacteriol., 2004, 186(13): 4177-4184. |
63 | 张俊. 嗜盐少动鞘氨醇单胞菌发酵产结冷胶的研究及其应用初探[D]. 杭州: 浙江大学, 2015. |
Zhang J. Study on fermentation biotechnology of gellan gum production by halobacterium S. paucimobilis OHZJUJW and its application[D]. Hangzhou: Zhejiang University, 2015. | |
64 | Wu X C, Chen Y M, Li Y D, et al. Constitutive expression of Vitreoscilla haemoglobin in Sphingomonas elodea to improve gellan gum production[J]. Journal of Applied Microbiology, 2011, 110(2): 422-430. |
65 | Zhu G L, Guo N, Yong Y N, et al. Effect of 2-deoxy-d-glucose on gellan gum biosynthesis by Sphingomonas paucimobilis[J]. Bioprocess and Biosystems Engineering, 2019, 42(5): 897-900. |
66 | Wang Y, Hu L T, Huang H, et al. Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum[J]. Nature Communications, 2020, 11: 3120. |
67 | Zheng Y, Cheng F, Zheng B, et al. Enhancing single-cell hyaluronic acid biosynthesis by microbial morphology engineering[J]. Synthetic and Systems Biotechnology, 2020, 5(4): 316-323. |
68 | Wang F, Lee S Y. Production of poly(3-hydroxybutyrate) by fed-batch culture of filamentation-suppressed recombinant Escherichia coli[J]. Applied and Environmental Microbiology, 1997, 63(12): 4765-4769. |
69 | Yu H M, Yin J, Li H Q, et al. Construction and selection of the novel recombinant Escherichia coli strain for poly(β-hydroxybutyrate) production[J]. Journal of Bioscience and Bioengineering, 2000, 89(4): 307-311. |
70 | 于慧敏, 张延平, 史悦, 等. 重组大肠杆菌VG1(pTU14)产PHB的补料分批培养[J]. 化工学报, 2002, 53(7): 742-746. |
Yu H M, Zhang Y P, Shi Y, et al. Production of poly-β-hydroxybutyrate by fed-batch culture of novel recombinant Escherichia coli VG1(pTU14)[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(7): 742-746. | |
71 | Amanullah A, Serrano-Carreon L, Castro B, et al. The influence of impeller type in pilot scale xanthan fermentations[J]. Biotechnology and Bioengineering, 1998, 57(1): 95-108. |
72 | Velu S, Velayutham V, Manickkam S. Optimization of fermentation media for xanthan gum production from Xanthomonas campestris using response surface methodology and artificial neural network techniques[J]. Indian Journal of Chemical Technology, 2016, 23(5): 353-361. |
73 | Kalogiannis S, Iakovidou G, Liakopoulou-Kyriakides M, et al. Optimization of xanthan gum production by Xanthomonas campestris grown in molasses[J]. Process Biochemistry, 2003, 39(2): 249-256. |
74 | Yang S T, Lo Y M, Min D B. Xanthan gum fermentation by Xanthomonas campestris immobilized in a novel centrifugal fibrous-bed bioreactor[J]. Biotechnology Progress, 1996, 12(5): 630-637. |
75 | Stepanov N A, Senko O V, Efremenko E N. Biocatalytic production of extracellular exopolysaccharide dextran synthesized by cells of Leuconostoc mesenteroides[J]. Catalysis in Industry, 2017, 9(4): 339-343. |
76 | Jin P, Kang Z, Yuan P H, et al. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168[J]. Metabolic Engineering, 2016, 35: 21-30. |
77 | Li Y Y, Shi Z Z, Shao Y Z, et al. Temperature-controlled molecular weight of hyaluronic acid produced by engineered Bacillus subtilis[J]. Biotechnology Letters, 2021, 43(1): 271-277. |
78 | Amanullah A, Serrano L C, Galindo E, et al. Reproducibility of pilot scale xanthan fermentations[J]. Biotechnology Progress, 1996, 12(4): 466-473. |
79 | Amanullah A, Tuttiett B, Nienow A W. Agitator speed and dissolved oxygen effects in xanthan fermentations[J]. Biotechnology and Bioengineering, 1998, 57(2): 198-210. |
80 | Padmanabhan P A, Kim D S. Production of insoluble dextran using cell-bound dextransucrase of Leuconostoc mesenteroides NRRL B-523[J]. Carbohydrate Research, 2002, 337(17): 1529-1533. |
81 | Amanullah A, Satti S, Nienow A W. Enhancing xanthan fermentations by different modes of glucose feeding[J]. Biotechnology Progress, 1998, 14(2): 265-269. |
82 | Zhu G L, Sheng L, Tong Q Y. A new strategy to enhance gellan production by two-stage culture in Sphingomonas paucimobilis[J]. Carbohydrate Polymers, 2013, 98(1): 829-834. |
83 | Ryu H W, Hahn S K, Chang Y K, et al. Production of poly(3-hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phospate limitation[J]. Biotechnology and Bioengineering, 1997, 55(1): 28-32. |
84 | Lee S H, Oh D H, Ahn W S, et al. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by high-cell-density cultivation of Aeromonas hydrophila[J]. Biotechnology and Bioengineering, 2000, 67(2): 240-244. |
85 | Lee S Y, Wong H H, Choi J I, et al. Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation[J]. Biotechnology and Bioengineering, 2000, 68(4): 466-470. |
86 | Jiang X R, Chen G Q. Morphology engineering of bacteria for bio-production[J]. Biotechnology Advances, 2016, 34(4): 435-440. |
87 | Ajikumar P K, Xiao W H, Tyo K E, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli[J]. Science, 2010, 330(6000): 70-74. |
88 | Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(7086): 940-943. |
89 | Yan X, Fan Y, Wei W, et al. Production of bioactive ginsenoside compound K in metabolically engineered yeast[J]. Cell Research, 2014, 24(6): 770-773. |
90 | 卢明, 陈代杰. 氨基糖苷类抗生素的拓展应用研究进展[J]. 中国抗生素杂志, 2019, 44(11): 1288-1294. |
Lu M, Chen D J. Advances in the extended use of aminoglycoside antibiotics[J]. Chinese Journal of Antibiotics, 2019, 44(11): 1288-1294. | |
91 | 王苗苗, 于慧敏, 何欣, 等. 高产表面活性素的重组枯草芽孢杆菌构建及培养优化[J]. 生物工程学报, 2020, 36(11): 2377-2386. |
Wang M M, Yu H M, He X, et al. Construction and optimization of engineered Bacillus subtilis for surfactin production[J]. Chinese Journal of Biotechnology, 2020, 36(11): 2377-2386. | |
92 |
Miller B W, Lim A L, Lin Z J, et al. Shipworm symbiosis ecology-guided discovery of an antibiotic that kills colistin-resistant Acinetobacter[J]. Cell Chemical Biology, 2021. DOI: 10.1016/j.chembiol.2021.05.003.
DOI |
93 | Cai T, Sun H B, Qiao J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527. |
94 | de Sousa Costa L A, Inomata Campos M, Izabel Druzian J, et al. Biosynthesis of xanthan gum from fermenting shrimp shell: yield and apparent viscosity[J]. International Journal of Polymer Science, 2014, 2014: 1-8. |
95 | Gunasekar V, Reshma K R, Treesa G, et al. Xanthan from sulphuric acid treated tapioca pulp: influence of acid concentration on xanthan fermentation[J]. Carbohydrate Polymers, 2014, 102: 669-673. |
96 | Li P Y, Li T, Zeng Y, et al. Biosynthesis of xanthan gum by Xanthomonas campestris LRELP-1 using kitchen waste as the sole substrate[J]. Carbohydrate Polymers, 2016, 151: 684-691. |
97 | Mohsin A, Zhang K P, Hu J L, et al. Optimized biosynthesis of xanthan via effective valorization of orange peels using response surface methodology: a kinetic model approach[J]. Carbohydrate Polymers, 2018, 181: 793-800. |
98 | Camacho-Zaragoza J M, Hernández-Chávez G, Moreno-Avitia F, et al. Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol[J]. Microbial Cell Factories, 2016, 15(1): 1-11. |
99 | Jones J A, Vernacchio V R, Sinkoe A L, et al. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids[J]. Metabolic Engineering, 2016, 35: 55-63. |
100 | Shahab R L, Brethauer S, Davey M P, et al. A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose[J]. Science, 2020, 369(6507): eabb1214. |
101 | Yoshida S, Hiraga K, Takehana T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278): 1196-1199. |
102 | Tiso T, Narancic T, Wei R, et al. Towards bio-upcycling of polyethylene terephthalate[J]. Metabolic Engineering, 2021, 66: 167-178. |
[1] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
[2] | Xue LIU, Lijuan ZHANG, Guangrong ZHAO. Commensalistic Escherichia coli coculture for biosynthesis of daidzein [J]. CIESC Journal, 2022, 73(9): 4015-4024. |
[3] | Yi SUN, Teng ZHANG, Bo LYU, Chun LI. Improvement for fine regulation of microbial cell factory by intracellular biosensors [J]. CIESC Journal, 2022, 73(2): 521-534. |
[4] | Zhen ZHANG, Xuecheng ZENG, Lei QIN, Chun LI. Intelligent design of microbial cell factory [J]. CIESC Journal, 2021, 72(12): 6093-6108. |
[5] | WANG Kaifeng, WANG Jinpeng, WEI Ping, JI Xiaojun. Metabolic engineering of Yarrowia lipolytica to produce fatty acids and their derivatives [J]. CIESC Journal, 2021, 72(1): 351-365. |
[6] | Yao ZHANG, Xiaoman QIU, Chengpeng CHEN, Zhuoran YU, Housheng HONG. Recent progress in microbial production of succinic acid [J]. CIESC Journal, 2020, 71(5): 1964-1975. |
[7] | Yanqin XU, Xizhi YANG, Ruoshi LUO, Yuhong HUANG, Feng HUO, Dan WANG. Application of synthetic biology in manufacture of bio-based plastics [J]. CIESC Journal, 2020, 71(10): 4520-4531. |
[8] | Tianhua CHEN, Ruosi ZHANG, Guozhen JIANG, Mingdong YAO, Hong LIU, Ying WANG, Wenhai XIAO, Yingjin YUAN. Metabolic engineering of Saccharomyces cerevisiae for pinene production [J]. CIESC Journal, 2019, 70(1): 179-188. |
[9] | ZHAO Yujia, ZHANG Genlin, ZHOU Xiaohong, LI Chun. Intelligent and fine regulation of microbial cell factory based on riboswitches [J]. CIESC Journal, 2015, 66(10): 3811-2819. |
[10] | MA Qiangqiang,ZHAO Guangrong. Research progress in L-DOPA synthesis [J]. Chemical Industry and Engineering Progree, 2013, 32(06): 1367-1371. |
[11] | YANG Wenge,CHEN Lin,LEI Ziyu,YIN Jingjing,GUAN Jun,HU Yonghong. Progress in production of ascomycin via fermentation [J]. , 2010, 29(7): 1309-. |
[12] | WANG Zhiwen,MA Xianghui,CHEN Xun,ZHAO Xueming,CHEN Tao. Progress of metabolic engineering for production of CoQ10 by Escherichia coli [J]. , 2009, 28(5): 855-. |
[13] | ZHANG Ying,YIN Yuji,YAO Kangde. Research progress of methanol-preventing proton exchange membranes for direct methanol fuel cells [J]. , 2007, 26(4): 501-. |
[14] |
JIANG Min,WEI Ping,LU Dingqiang,XU Hong,ZHOU Hua,OUYANG Pingkai.
Considerations on the development of industrial biotechnology of post-petroleum epoch [J]. , 2006, 25(10): 1119-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 409
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 626
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||