CIESC Journal ›› 2023, Vol. 74 ›› Issue (5): 2034-2045.DOI: 10.11949/0438-1157.20221611
• Separation engineering • Previous Articles Next Articles
Yongyao SUN1,2(), Qiuying GAO1,2, Wenguang ZENG1,2, Jiaming WANG3, Yifei CHEN3, Yongzhe ZHOU3, Gaohong HE3, Xuehua RUAN3(
)
Received:
2022-12-13
Revised:
2023-05-03
Online:
2023-06-29
Published:
2023-05-05
Contact:
Xuehua RUAN
孙永尧1,2(), 高秋英1,2, 曾文广1,2, 王佳铭3, 陈艺飞3, 周永哲3, 贺高红3, 阮雪华3(
)
通讯作者:
阮雪华
作者简介:
孙永尧(1996—),男,硕士,工程师,2253893150@qq.com
基金资助:
CLC Number:
Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields[J]. CIESC Journal, 2023, 74(5): 2034-2045.
孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045.
Component | Generation cases in oilfield/ %(mol) | Critical properties | |||
---|---|---|---|---|---|
Early stage | Middle stage | Later stage | Tc/K | Vc/ (cm3/mol) | |
N2 | 11.43 | 23.87 | 33.26 | 126.2 | 90.0 |
CH4 | 58.53 | 47.67 | 39.71 | 190.7 | 99.0 |
C2H6 | 11.30 | 10.35 | 9.48 | 305.5 | 98.6 |
C3H8 | 6.30 | 6.12 | 5.94 | 369.9 | 200.0 |
i-C4H10 | 2.02 | 1.99 | 1.97 | 408.1 | 263.0 |
n-C4H10 | 2.75 | 2.73 | 2.71 | 425.2 | 255.0 |
i-C5H12 | 1.71 | 1.71 | 1.71 | 460.4 | 308.0 |
n-C5H12 | 1.44 | 1.44 | 1.44 | 469.7 | 311.0 |
C6H14 | 0.50 | 0.50 | 0.50 | 507.9 | 368.0 |
C7H16 | 0.21 | 0.21 | 0.21 | 540.2 | 426.0 |
CO2 | 2.56 | 2.21 | 1.92 | 304.2 | 93.9 |
H2S | 0.85 | 0.78 | 0.72 | 373.7 | 98.0 |
H2O | 0.41 | 0.42 | 0.42 | 647.3 | 57.1 |
Table 1 Composition of associated gas in a gathering and transportation station of Northwest Oilfield
Component | Generation cases in oilfield/ %(mol) | Critical properties | |||
---|---|---|---|---|---|
Early stage | Middle stage | Later stage | Tc/K | Vc/ (cm3/mol) | |
N2 | 11.43 | 23.87 | 33.26 | 126.2 | 90.0 |
CH4 | 58.53 | 47.67 | 39.71 | 190.7 | 99.0 |
C2H6 | 11.30 | 10.35 | 9.48 | 305.5 | 98.6 |
C3H8 | 6.30 | 6.12 | 5.94 | 369.9 | 200.0 |
i-C4H10 | 2.02 | 1.99 | 1.97 | 408.1 | 263.0 |
n-C4H10 | 2.75 | 2.73 | 2.71 | 425.2 | 255.0 |
i-C5H12 | 1.71 | 1.71 | 1.71 | 460.4 | 308.0 |
n-C5H12 | 1.44 | 1.44 | 1.44 | 469.7 | 311.0 |
C6H14 | 0.50 | 0.50 | 0.50 | 507.9 | 368.0 |
C7H16 | 0.21 | 0.21 | 0.21 | 540.2 | 426.0 |
CO2 | 2.56 | 2.21 | 1.92 | 304.2 | 93.9 |
H2S | 0.85 | 0.78 | 0.72 | 373.7 | 98.0 |
H2O | 0.41 | 0.42 | 0.42 | 647.3 | 57.1 |
Cases | P/MPa(表压) | T/ °C | Composition/%(mol) | |||
---|---|---|---|---|---|---|
N2 | CH4 | C2H6 | C3H8 | |||
MG-1 | 1.50 | 30 | 13.6 | 68.6 | 11.6 | 6.2 |
MG-2 | 1.50 | 30 | 28.0 | 55.3 | 10.6 | 6.1 |
MG-3 | 1.50 | 30 | 37.9 | 45.3 | 10.8 | 6.0 |
MG-4 | 1.50 | 30 | 16.0 | 76.6 | 6.5 | 0.9 |
MG-5 | 1.50 | 30 | 32.0 | 60.7 | 6.4 | 0.9 |
MG-6 | 1.50 | 30 | 43.7 | 49.4 | 6.0 | 0.9 |
MG-7 | 1.50 | 30 | 43.0 | 56.8 | 0.2 | 0 |
MG-8 | 1.50 | 30 | 50.9 | 48.9 | 0.2 | 0 |
MG-9 | 1.50 | 30 | 58.2 | 41.7 | 0.1 | 0 |
MG-10 | 1.50 | 30 | 67.5 | 32.4 | 0.1 | 0 |
Table 2 Diversified natural gases after condensation for testing PDMS membrane’s performance
Cases | P/MPa(表压) | T/ °C | Composition/%(mol) | |||
---|---|---|---|---|---|---|
N2 | CH4 | C2H6 | C3H8 | |||
MG-1 | 1.50 | 30 | 13.6 | 68.6 | 11.6 | 6.2 |
MG-2 | 1.50 | 30 | 28.0 | 55.3 | 10.6 | 6.1 |
MG-3 | 1.50 | 30 | 37.9 | 45.3 | 10.8 | 6.0 |
MG-4 | 1.50 | 30 | 16.0 | 76.6 | 6.5 | 0.9 |
MG-5 | 1.50 | 30 | 32.0 | 60.7 | 6.4 | 0.9 |
MG-6 | 1.50 | 30 | 43.7 | 49.4 | 6.0 | 0.9 |
MG-7 | 1.50 | 30 | 43.0 | 56.8 | 0.2 | 0 |
MG-8 | 1.50 | 30 | 50.9 | 48.9 | 0.2 | 0 |
MG-9 | 1.50 | 30 | 58.2 | 41.7 | 0.1 | 0 |
MG-10 | 1.50 | 30 | 67.5 | 32.4 | 0.1 | 0 |
Main components | Permeation rate/GPU | Selectivity | |||||
---|---|---|---|---|---|---|---|
N2 | CH4 | C2H6 | C3H8 | CH4/N2 | C2H6/N2 | C3H8/N2 | |
N2+CH4+C2H6+C3H8 | 151 | 518 | 1059 | 2208 | 3.4 | 7.0 | 14.6 |
N2+CH4+C2H6 | 132 | 422 | 966 | 2005 | 3.2 | 7.3 | 15.2 |
N2+CH4 | 119 | 358 | 911 | 1855 | 3.0 | 7.7 | 15.6 |
Table 3 Data about PDMS membrane’s performance for process simulation and optimization
Main components | Permeation rate/GPU | Selectivity | |||||
---|---|---|---|---|---|---|---|
N2 | CH4 | C2H6 | C3H8 | CH4/N2 | C2H6/N2 | C3H8/N2 | |
N2+CH4+C2H6+C3H8 | 151 | 518 | 1059 | 2208 | 3.4 | 7.0 | 14.6 |
N2+CH4+C2H6 | 132 | 422 | 966 | 2005 | 3.2 | 7.3 | 15.2 |
N2+CH4 | 119 | 358 | 911 | 1855 | 3.0 | 7.7 | 15.6 |
Parameter | CASE-1 | CASE-2 | CASE-3 |
---|---|---|---|
investment/106 CNY | 15.93 | 27.19 | 38.68 |
depreciation/(106 CNY/a) | 1.12 | 2.27 | 3.40 |
operation cost/(106 CNY/a) | 6.03 | 10.82 | 14.93 |
gross profit/(106 CNY/a) | 47.67 | 61.90 | 79.00 |
NGL yield/(t/a) | 16296 | 22092 | 23604 |
NGL recovery/%(mass) | 53.4 | 74.5 | 77.6 |
NG yield/(106 m3/a, standard condition) | — | — | 18.03 |
NG recovery/% | — | — | 54.4 |
poor NG yield/(106 m3/a,standard condition) | 49.87 | 46.10 | 27.79 |
Table 4 Comparative analysis of economic parameters for three separation systems
Parameter | CASE-1 | CASE-2 | CASE-3 |
---|---|---|---|
investment/106 CNY | 15.93 | 27.19 | 38.68 |
depreciation/(106 CNY/a) | 1.12 | 2.27 | 3.40 |
operation cost/(106 CNY/a) | 6.03 | 10.82 | 14.93 |
gross profit/(106 CNY/a) | 47.67 | 61.90 | 79.00 |
NGL yield/(t/a) | 16296 | 22092 | 23604 |
NGL recovery/%(mass) | 53.4 | 74.5 | 77.6 |
NG yield/(106 m3/a, standard condition) | — | — | 18.03 |
NG recovery/% | — | — | 54.4 |
poor NG yield/(106 m3/a,standard condition) | 49.87 | 46.10 | 27.79 |
1 | 陈平, 樊洪, 漆明勇. 川中低渗油田开发后期伴生气增压开采技术[J]. 天然气工业, 2003, 23(S1):136-138, 17. |
Chen P, Fan H, Qi M Y. Accompanying gas recovering techniques with booster for late development of low permeability oil fields in middle Sichuan area[J]. Natural Gas Industry, 2003, 23(S1):136-138, 17. | |
2 | 赵春鹏. 特低渗透油藏渗流及开采特性实验研究[D]. 北京: 中国石油大学(北京), 2007. |
Zhao C P. Experimental study on seepage and production characteristics of ultra-low permeability reservoir[D]. Beijing: China University of Petroleum, 2007. | |
3 | 刘继伟, 王刘琦, 肖世鑫, 等. 稠油区块氮气泡沫辅助蒸汽驱技术[J]. 油气田地面工程, 2013, 32(12): 6-7. |
Liu J W, Wang L Q, Xiao S X, et al. Nitrogen foam assisted steam flooding technology in heavy oil block[J]. Oil-Gasfield Surface Engineering, 2013, 32(12): 6-7. | |
4 | Han D K, Yang C Z, Zhang Z Q, et al. Recent development of enhanced oil recovery in China[J]. Journal of Petroleum Science and Engineering, 1999, 22(1/2/3): 181-188. |
5 | Gbadamosi A O, Junin R, Manan M A, et al. An overview of chemical enhanced oil recovery: recent advances and prospects[J]. International Nano Letters, 2019, 9(3): 171-202. |
6 | 付洪涛, 王世栋, 潘一, 等. 气体驱油的研究现状[J]. 能源化工, 2015, 36(5): 44-48. |
Fu H T, Wang S D, Pan Y, et al. Research status of gas flooding[J]. Energy Chemical Industry, 2015, 36(5): 44-48. | |
7 | 侯焜 译. 塔河油田规模氮气驱地面配套方案研究[D]. 北京: 中国石油大学(北京), 2019. |
Hou K Y. Study on surface matching scheme of large-scale nitrogen flooding in Tahe oilfield[D]. Beijing: China University of Petroleum, 2019. | |
8 | 任增泉. 塔河油田注气开发地面配套技术研究[D]. 东营: 中国石油大学(华东), 2016. |
Ren Z Q. Study on surface supporting technology of gas injection development in Tahe oilfield[D]. Dongying: China University of Petroleum, 2016. | |
9 | Wei P, Pu W F, Sun L, et al. Research on nitrogen foam for enhancing oil recovery in harsh reservoirs[J]. Journal of Petroleum Science and Engineering, 2017, 157: 27-38. |
10 | Fahandezhsaadi M, Amooie M A, Hemmati-Sarapardeh A, et al. Laboratory evaluation of nitrogen injection for enhanced oil recovery: effects of pressure and induced fractures[J]. Fuel, 2019, 253: 607-614. |
11 | Sun L, Wei P, Pu W F, et al. The oil recovery enhancement by nitrogen foam in high-temperature and high-salinity environments[J]. Journal of Petroleum Science and Engineering, 2016, 147: 485-494. |
12 | 中国国家市场监督管理总局, 中国国家标准化管理委员会. 天然气: [S]. 北京: 中国标准出版社, 2018. |
China’s State Administration for Market Regulation, Standardization Administration of China. Natural gas: [S]. Beijing: China Standard Press, 2018. | |
13 | 顾晓峰, 王日生, 吴宝清, 等. 天然气脱氮工艺评述[J]. 石油与天然气化工, 2019, 48(1): 12-17. |
Gu X F, Wang R S, Wu B Q, et al. Review on natural gas denitrification process[J]. Chemical Engineering of Oil and Gas, 2019, 48(1): 12-17. | |
14 | 韩治洋, 丁兆阳, 韩旸湲, 等. 真空变压吸附分离氮气甲烷的模拟与控制[J]. 化工学报, 2018, 69(2): 750-758. |
Han Z Y, Ding Z Y, Han Y Y, et al. Simulation and control of vacuum pressure swing adsorption for N2/CH4 separation[J]. CIESC Journal, 2018, 69(2): 750-758. | |
15 | 于喆淼, 王志, 生梦龙, 等. 界面聚合法制备用于脱氮提纯CH4的N2优先渗透ZIF-90/聚酰胺混合基质膜[J]. 化工学报, 2022, 73(7): 3273-3286. |
Yu Z M, Wang Z, Sheng M L, et al. Preparation of ZIF-90/polyamide mixed matrix membrane with N2 preferential permeation for CH4 purification based on interfacial polymerization[J]. CIESC Journal, 2022, 73(7): 3273-3286. | |
16 | 王少靖, 刘琳琳, 张磊, 等. 集成NGL回收的新型天然气液化系统AP-XTM的概念设计与模拟分析[J]. 化工学报, 2019, 70(2): 508-515. |
Wang S J, Liu L L, Zhang L, et al. Conceptual design, simulation and analysis of novel AP-XTM system integrated with NGL recovery process for large-scale LNG plant[J]. CIESC Journal, 2019, 70(2): 508-515. | |
17 | 孙伟娜, 阎海宇, 张东辉. 真空变压吸附分离氮气甲烷流程灵敏度分析与优化[J]. 化工学报, 2016, 67(2): 598-605. |
Sun W N, Yan H Y, Zhang D H. Sensitivity analysis and optimization of vacuum pressure swing adsorption process for N2/CH4 separation[J]. CIESC Journal, 2016, 67(2): 598-605. | |
18 | Baker R W. Future directions of membrane gas separation technology[J]. Industrial & Engineering Chemistry Research, 2002, 41(6): 1393-1411. |
19 | Merkel T C, Bondar V I, Nagai K, et al. Gas sorption, diffusion, and permeation in poly(dimethylsiloxane)[J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(3): 415-434. |
20 | Cecopieri-Gómez M L, Palacios-Alquisira J, Domínguez J M. On the limits of gas separation in CO2/CH4, N2/CH4 and CO2/N2 binary mixtures using polyimide membranes[J]. Journal of Membrane Science, 2007, 293(1/2): 53-65. |
21 | Wu T, Diaz M C, Zheng Y H, et al. Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes[J]. Journal of Membrane Science, 2015, 473: 201-209. |
22 | Zhou R F, Pan Y C, Xing W H, et al. Advanced microporous membranes for H2/CH4 separation: challenges and perspectives[J]. Advanced Membranes, 2021, 1: 100011. |
23 | Baker R W, Lokhandwala K. Natural gas processing with membranes: an overview[J]. Industrial & Engineering Chemistry Research, 2008, 47(7): 2109-2121. |
24 | Lokhandwala K A, Pinnau I, He Z J, et al. Membrane separation of nitrogen from natural gas: a case study from membrane synthesis to commercial deployment[J]. Journal of Membrane Science, 2010, 346(2): 270-279. |
25 | 李雯, 王志, 李潘源, 等. 用于甲烷-氮气体系分离的膜技术研究进展[J]. 化工学报, 2016, 67(2): 404-415. |
Li W, Wang Z, Li P Y, et al. Progress in membrane technology for CH4-N2 separation[J]. CIESC Journal, 2016, 67(2): 404-415. | |
26 | 陈雷, 李东泽, 刘刚, 等. 甲烷-氮气分离膜研究进展及展望[J]. 天然气工业, 2022, 42(5): 120-130. |
Chen L, Li D Z, Liu G, et al. Research progress and prospect of CH4/N2 separation membranes[J]. Natural Gas Industry, 2022, 42(5): 120-130. | |
27 | 李鹏, 赵德银, 张健, 等. 油田伴生气净化工艺优化研究及工业应用[J]. 石油与天然气化工, 2021, 50(2): 17-22. |
Li P, Zhao D Y, Zhang J, et al. Optimization study and industrial application of oilfield associated gas purification process[J]. Chemical Engineering of Oil and Gas, 2021, 50(2): 17-22. | |
28 | Koros W J, Fleming G K, Jordan S M, et al. Polymeric membrane materials for solution-diffusion based permeation separations[J]. Progress in Polymer Science, 1988, 13(4): 339-401. |
29 | Wijmans J G, Baker R W. The solution-diffusion model: a review[J]. Journal of Membrane Science, 1995, 107(1/2): 1-21. |
30 | Pandey P, Chauhan R S. Membranes for gas separation[J]. Progress in Polymer Science, 2001, 26(6): 853-893. |
31 | Katoh T, Tokumura M, Yoshikawa H, et al. Dynamic simulation of multicomponent gas separation by hollow-fiber membrane module: nonideal mixing flows in permeate and residue sides using the tanks-in-series model[J]. Separation and Purification Technology, 2011, 76(3): 362-372. |
32 | Ruan X H, He G H, Li B J, et al. Chemical potential analysis for directing the optimal design of gas membrane separation frameworks[J]. Chemical Engineering Science, 2014, 107: 245-255. |
33 | Ruan X H, Dai Y, Du L, et al. Further separation of HFC-23 and HCFC-22 by coupling multi-stage PDMS membrane unit to cryogenic distillation[J]. Separation and Purification Technology, 2015, 156: 673-682. |
34 | Chen B, Ruan X H, Xiao W, et al. Synergy of CO2 removal and light hydrocarbon recovery from oil-field associated gas by dual-membrane process[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1254-1263. |
35 | Chen B, Ruan X H, Jiang X B, et al. Dual-membrane module and its optimal flow pattern for H2/CO2 separation[J]. Industrial & Engineering Chemistry Research, 2016, 55(4): 1064-1075. |
36 | 阮雪华. 气体膜分离及其梯级耦合流程的设计与优化[D]. 大连: 大连理工大学, 2014. |
Ruan X H. Design and optimization of gas membrane separation and its cascade coupling process[D]. Dalian: Dalian University of Technology, 2014. | |
37 | 阮雪华, 贺高红, 肖武, 等. 生物甲烷膜分离提纯系统的设计与优化[J]. 化工学报, 2014, 65(5): 1688-1695. |
Ruan X H, He G H, Xiao W, et al. Design and optimization of membrane-based system for bio-methane purification[J]. CIESC Journal, 2014, 65(5): 1688-1695. | |
38 | Ruan X H, Xiao H Y, Jiang X B, et al. Graphic synthesis method for multi-technique integration separation sequences of multi-input refinery gases[J]. Separation and Purification Technology, 2019, 214: 187-195. |
[1] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[2] | Mingchuan LI, Shuanshi FAN, Fuhai XU, Huidong LU, Xiaojun LI. Existence and Laplace transform of the solution to Stefan phase change model in thermal dissociation hydrate [J]. CIESC Journal, 2023, 74(4): 1746-1754. |
[3] | Qian LIU, Yu CAO, Qi ZHOU, Jingshan MU, Wei LI. Design of Ziegler-Natta catalyst modified with pore structure and preparation of UHMWPE with high impact resistance and low entanglement [J]. CIESC Journal, 2023, 74(3): 1092-1101. |
[4] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
[5] | Hao CHEN, Yijuan TIAN, Xuejun QUAN, Ziwen JIANG, Gang LI. Decomposition behaviour of chromite in the HCl-HF system [J]. CIESC Journal, 2023, 74(3): 1161-1174. |
[6] | Nini YUAN, Tuo GUO, Hongcun BAI, Yurong HE, Yongning YUAN, Jingjing MA, Qingjie GUO. Reaction process of CH4 on the surface of Fe2O3/Al2O3 oxygen carrier in chemical looping combustion: ReaxFF-MD simulation [J]. CIESC Journal, 2022, 73(9): 4054-4061. |
[7] | Ke YANG, Chensheng WANG, Hong JI, Kai ZHENG, Zhixiang XING, Haipu BI, Juncheng JIANG. Experimental study on inhibition of methane explosion by polydopamine coated mixed powder [J]. CIESC Journal, 2022, 73(9): 4245-4254. |
[8] | Jiaming WANG, Xuehua RUAN, Gaohong HE. Research progress of membrane separation materials for different industrial CO2-containing mixtures [J]. CIESC Journal, 2022, 73(8): 3417-3432. |
[9] | Yuehui HOU, Xuan LIU, Yingjiang LIAN, Mei HAN, Chaoqun YAO, Guangwen CHEN. Synthesis process of trinitrophloroglucinol in an ultrasonic microreactor [J]. CIESC Journal, 2022, 73(8): 3597-3607. |
[10] | Mengxi LIU, Yiping FAN, Zihan YAN, Xiuying YAO, Chunxi LU. Regulation and industrial application of gas jet hydrodynamic behavior in a feedstock injection zone of a riser [J]. CIESC Journal, 2022, 73(6): 2496-2513. |
[11] | Chenyang ZHOU, Ying JIA, Yuemin ZHAO, Yong ZHANG, Zhijie FU, Yuqing FENG, Chenlong DUAN. Intensification of dry dense medium fluidization separation process from a mesoscale perspective [J]. CIESC Journal, 2022, 73(6): 2452-2467. |
[12] | Cuiping TANG, Yanan ZHANG, Deqing LIANG, Xiang LI. Inhibition effect of chain end modified polyvinyl caprolactam on methane hydrate formation [J]. CIESC Journal, 2022, 73(5): 2130-2139. |
[13] | Guixian LI, Ke WANG, Jian WANG, Wenliang MENG, Jingwei LI, Yong YANG, Zongliang FAN, Dongliang WANG, Huairong ZHOU. Optimal design of membrane separation process for capturing CO2 from flue gas of coal-fired power plant [J]. CIESC Journal, 2022, 73(11): 5065-5077. |
[14] | ZHANG Yashuang, LI Hong, CONG Haifeng, HAN Hongming, LI Xingang, GAO Xin. Numerical simulation of microwave-enhanced spiral liquid-bridge falling film evaporator [J]. CIESC Journal, 2021, 72(S1): 227-235. |
[15] | WU Zhongjie, LIU Zeyan, XIE Lianke, CUI Mei, HUANG Renliang. Preparation of hydrophilic poly(vinylidene fluoride) membrane for oil/water emulsion separation and heavy metal ions adsorption [J]. CIESC Journal, 2021, 72(S1): 421-429. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||