CIESC Journal ›› 2023, Vol. 74 ›› Issue (3): 1092-1101.DOI: 10.11949/0438-1157.20221460
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Qian LIU1,2,3(), Yu CAO1, Qi ZHOU2(), Jingshan MU1(), Wei LI3,4
Received:
2022-11-08
Revised:
2023-01-18
Online:
2023-04-19
Published:
2023-03-05
Contact:
Qi ZHOU, Jingshan MU
刘倩1,2,3(), 曹禹1, 周琦2(), 穆景山1(), 历伟3,4
通讯作者:
周琦,穆景山
作者简介:
刘倩(1998—),女,硕士研究生,1042646737@qq.com
基金资助:
CLC Number:
Qian LIU, Yu CAO, Qi ZHOU, Jingshan MU, Wei LI. Design of Ziegler-Natta catalyst modified with pore structure and preparation of UHMWPE with high impact resistance and low entanglement[J]. CIESC Journal, 2023, 74(3): 1092-1101.
刘倩, 曹禹, 周琦, 穆景山, 历伟. 孔道结构修饰的Ziegler-Natta催化剂设计与高抗冲低缠结UHMWPE的制备[J]. 化工学报, 2023, 74(3): 1092-1101.
Supports | Pore size /nm | Surface area /(cm2·g-1) | Pore volume /(cm3·g-1) |
---|---|---|---|
SiO2 | 24.99 | 204.12 | 1.74 |
SiO2/PS | 23.77 | 201.28 | 1.51 |
SiO2/POSS | 20.67 | 206.24 | 1.23 |
SiO2/PS/POSS | 19.26 | 202.61 | 1.10 |
Table 1 Pore size parameters of composite supporters
Supports | Pore size /nm | Surface area /(cm2·g-1) | Pore volume /(cm3·g-1) |
---|---|---|---|
SiO2 | 24.99 | 204.12 | 1.74 |
SiO2/PS | 23.77 | 201.28 | 1.51 |
SiO2/POSS | 20.67 | 206.24 | 1.23 |
SiO2/PS/POSS | 19.26 | 202.61 | 1.10 |
Catalyst | Ti(Ⅳ) 2p1/2 | Ti(Ⅳ) 2p3/2 | Mg 2p | |||
---|---|---|---|---|---|---|
BE/eV | FWHM/eV | BE/eV | FWHM/eV | BE/eV | FWHM/eV | |
SiO2/TiCl4 | 464.27 | 3.32 | 459.21 | 2.92 | 51.06 | 2.88 |
SiO2/POSS/TiCl4 | 465.03 | 3.21 | 459.35 | 2.83 | 51.15 | 2.72 |
SiO2/PS/TiCl4 | 464.39 | 3.33 | 459.25 | 2.97 | 51.08 | 2.89 |
SiO2/PS/POSS/TiCl4 | 465.07 | 3.14 | 459.39 | 2.78 | 51.20 | 2.69 |
Table 2 XPS analysis results of catalysts modified by PS or POSS
Catalyst | Ti(Ⅳ) 2p1/2 | Ti(Ⅳ) 2p3/2 | Mg 2p | |||
---|---|---|---|---|---|---|
BE/eV | FWHM/eV | BE/eV | FWHM/eV | BE/eV | FWHM/eV | |
SiO2/TiCl4 | 464.27 | 3.32 | 459.21 | 2.92 | 51.06 | 2.88 |
SiO2/POSS/TiCl4 | 465.03 | 3.21 | 459.35 | 2.83 | 51.15 | 2.72 |
SiO2/PS/TiCl4 | 464.39 | 3.33 | 459.25 | 2.97 | 51.08 | 2.89 |
SiO2/PS/POSS/TiCl4 | 465.07 | 3.14 | 459.39 | 2.78 | 51.20 | 2.69 |
Samples | Ti/ %(mass) | Act/ (106 g PE⋅ (mol Ti·h)-1) | Bulk density/ (g·cm-3) | Mη / (106 g·mol-1) | MWD | Mw / (106 g·mol-1) | ||||
---|---|---|---|---|---|---|---|---|---|---|
PE-SiO2/TiCl4 | 5.43 | 2.83 | 0.30 | 144.38 | 137.85 | 69.12 | 56.51 | 1.84 | 2.5 | 0.53 |
PE-SiO2/POSS/TiCl4 | 4.82 | 3.03 | 0.31 | 144.01 | 137.68 | 68.35 | 57.32 | 2.09 | 2.6 | 0.64 |
PE-SiO2/PS/TiCl4 | 5.31 | 2.47 | 0.33 | 144.31 | 137.51 | 67.26 | 58.41 | 2.72 | 2.8 | 0.82 |
PE-SiO2/PS/POSS/TiCl4 | 4.54 | 3.28 | 0.32 | 145.08 | 138.16 | 70.12 | 59.02 | 3.47 | 3.0 | 1.25 |
PE-SiO2/PS/POSS/TiCl4-reduce the loading content | ||||||||||
Cat-TiCl4-10 ml | 4.54 | 3.28 | 0.32 | 145.08 | 138.16 | 70.12 | 59.02 | 3.47 | 3.0 | 1.25 |
Cat-TiCl4-8 ml | 3.66 | 4.77 | 0.35 | 144.78 | 137.91 | 71.95 | 61.3 | 3.48 | 3.0 | 1.27 |
Cat-TiCl4-6 ml | 2.65 | 5.39 | 0.37 | 144.80 | 137.04 | 71.20 | 60.05 | 3.64 | 3.1 | 1.32 |
Cat-TiCl4-4 ml | 1.68 | 3.70 | 0.33 | 144.54 | 137.79 | 70.05 | 58.95 | 3.50 | 3.1 | 1.28 |
UHMWPE | — | — | 0.33 | 144.43 | 137.32 | 58.26 | 45.01 | 3.50 | 2.9 | 1.31 |
Table 3 The results of ethylene polymerization
Samples | Ti/ %(mass) | Act/ (106 g PE⋅ (mol Ti·h)-1) | Bulk density/ (g·cm-3) | Mη / (106 g·mol-1) | MWD | Mw / (106 g·mol-1) | ||||
---|---|---|---|---|---|---|---|---|---|---|
PE-SiO2/TiCl4 | 5.43 | 2.83 | 0.30 | 144.38 | 137.85 | 69.12 | 56.51 | 1.84 | 2.5 | 0.53 |
PE-SiO2/POSS/TiCl4 | 4.82 | 3.03 | 0.31 | 144.01 | 137.68 | 68.35 | 57.32 | 2.09 | 2.6 | 0.64 |
PE-SiO2/PS/TiCl4 | 5.31 | 2.47 | 0.33 | 144.31 | 137.51 | 67.26 | 58.41 | 2.72 | 2.8 | 0.82 |
PE-SiO2/PS/POSS/TiCl4 | 4.54 | 3.28 | 0.32 | 145.08 | 138.16 | 70.12 | 59.02 | 3.47 | 3.0 | 1.25 |
PE-SiO2/PS/POSS/TiCl4-reduce the loading content | ||||||||||
Cat-TiCl4-10 ml | 4.54 | 3.28 | 0.32 | 145.08 | 138.16 | 70.12 | 59.02 | 3.47 | 3.0 | 1.25 |
Cat-TiCl4-8 ml | 3.66 | 4.77 | 0.35 | 144.78 | 137.91 | 71.95 | 61.3 | 3.48 | 3.0 | 1.27 |
Cat-TiCl4-6 ml | 2.65 | 5.39 | 0.37 | 144.80 | 137.04 | 71.20 | 60.05 | 3.64 | 3.1 | 1.32 |
Cat-TiCl4-4 ml | 1.68 | 3.70 | 0.33 | 144.54 | 137.79 | 70.05 | 58.95 | 3.50 | 3.1 | 1.28 |
UHMWPE | — | — | 0.33 | 144.43 | 137.32 | 58.26 | 45.01 | 3.50 | 2.9 | 1.31 |
Ti content/% | Ti(Ⅳ) 2p1/2 | Ti(Ⅳ) 2p3/2 | Mg 2p | |||
---|---|---|---|---|---|---|
BE/ eV | FWHM/eV | BE/ eV | FWHM/eV | BE/ eV | FWHM/eV | |
4.27 | 465.15 | 3.02 | 459.35 | 2.51 | 51.30 | 2.48 |
3.66 | 465.15 | 2.97 | 459.37 | 2.48 | 51.50 | 2.33 |
2.65 | 465.24 | 2.78 | 459.39 | 2.31 | 51.69 | 2.28 |
1.68 | 465.13 | 2.67 | 459.35 | 2.29 | 51.19 | 2.18 |
Table 4 XPS analysis results of catalysts with different titanium contents
Ti content/% | Ti(Ⅳ) 2p1/2 | Ti(Ⅳ) 2p3/2 | Mg 2p | |||
---|---|---|---|---|---|---|
BE/ eV | FWHM/eV | BE/ eV | FWHM/eV | BE/ eV | FWHM/eV | |
4.27 | 465.15 | 3.02 | 459.35 | 2.51 | 51.30 | 2.48 |
3.66 | 465.15 | 2.97 | 459.37 | 2.48 | 51.50 | 2.33 |
2.65 | 465.24 | 2.78 | 459.39 | 2.31 | 51.69 | 2.28 |
1.68 | 465.13 | 2.67 | 459.35 | 2.29 | 51.19 | 2.18 |
Ti content/% | Fmax①/MPa | YM②/MPa | ε③/% | Izod④/(kJ·m-2) |
---|---|---|---|---|
4.27 | 27.5±2.6 | 386.7±46.0 | 569.7±73.0 | 108.0±0.8 |
3.66 | 27.2±0.9 | 394.5±62.0 | 535.8±52.0 | 110.2±2.2 |
2.65 | 31.0±1.5 | 385.2±47.0 | 474.3±44.0 | 116.6±5.5 |
1.68 | 32.0±2.2 | 365.2±47.0 | 444.3±44.0 | 108.6±5.5 |
Table 5 Mechanical properties of disentanglement polyethylene
Ti content/% | Fmax①/MPa | YM②/MPa | ε③/% | Izod④/(kJ·m-2) |
---|---|---|---|---|
4.27 | 27.5±2.6 | 386.7±46.0 | 569.7±73.0 | 108.0±0.8 |
3.66 | 27.2±0.9 | 394.5±62.0 | 535.8±52.0 | 110.2±2.2 |
2.65 | 31.0±1.5 | 385.2±47.0 | 474.3±44.0 | 116.6±5.5 |
1.68 | 32.0±2.2 | 365.2±47.0 | 444.3±44.0 | 108.6±5.5 |
1 | 陈莉蓉. 超高分子量聚乙烯多孔材料的制备及性能研究[D]. 广州: 华南理工大学, 2017. |
Chen L R. Preparation and property studies of UHMWPE porous materials[D]. Guangzhou: South China University of Technology, 2017. | |
2 | Ronca S, Forte G, Tjaden H, et al. Tailoring molecular structure via nanoparticles for solvent-free processing of ultra-high molecular weight polyethylene composites[J]. Polymer, 2012, 53(14): 2897-2907. |
3 | Romano D, Tops N, Andablo-Reyes E, et al. Influence of polymerization conditions on melting kinetics of low entangled UHMWPE and its implications on mechanical properties[J]. Macromolecules, 2014, 47(14): 4750-4760. |
4 | 陈创, 于俊荣, 王新威, 等. 超高相对分子质量聚乙烯中空纤维膜的制备与性能研究[J]. 化工新型材料, 2015, 43(1): 43-45, 54. |
Chen C, Yu J R, Wang X W, et al. Preparation and property of ultrahigh molecular weight polyethylene hollow fiber membranes[J]. New Chemical Materials, 2015, 43(1): 43-45, 54. | |
5 | Kurek A, Xalter R, Stürzel M, et al. Silica nanofoam (NF) supported single-and dual-site catalysts for ethylene polymerization with morphology control and tailored bimodal molar mass distributions[J]. Macromolecules, 2013, 46(23): 9197-9201. |
6 | Wang H D, Li Y, Li W, et al. The microstructure-tensile property relationship of polyethylene resin for biaxially stretched film[J]. Journal of Polymer Research, 2022, 29(1): 31. |
7 | Rastogi S, Lippits D R, Peters G W M, et al. Heterogeneity in polymer melts from melting of polymer crystals[J]. Nature Materials, 2005, 4(8): 635-641. |
8 | 梁鹏. POSS诱导高性能非均相Ziegler-Natta催化剂与原位红外光谱研究[D]. 杭州: 浙江大学, 2021. |
Liang P. POSS-induced high-performance Ziegler-Natta catalysts and investigation of in situ infrared spectroscopy[D]. Hangzhou: Zhejiang University, 2021. | |
9 | Hui L, Yue Z, Yang H Q, et al. Influence of the fragmentation of POSS-modified heterogeneous catalyst on the formation of chain entanglements[J]. Industrial & Engineering Chemistry Research, 2018, 57(29): 9400-9406. |
10 | Chen Y M, Liang P, Yue Z, et al. Entanglement formation mechanism in the POSS modified heterogeneous Ziegler-Natta catalysts[J]. Macromolecules, 2019, 52(20): 7593-7602. |
11 | Wu Y J, Yang H Q, Li W, et al. Tailored crystalline order of nascent polyethylene from metallocene supported on confined polystyrene[J]. Catalysis Today, 2021, 368: 272-280. |
12 | Li W, Jiang B B, Wang J D, et al. Organic/inorganic support for immobilizing (n-BuCp)2ZrCl2/TiCl3 hybrid catalyst for use in the preparation of polymer blends[J]. Polymer International, 2011, 60(4): 676-684. |
13 | Wight A P, Davis M E. Design and preparation of organic-inorganic hybrid catalysts[J]. Chemical Reviews, 2002, 102(10): 3589-3613. |
14 | Du L J, Li W, Fan L N, et al. Hybrid titanium catalyst supported on core-shell silica/poly(styrene-co-acrylic acid) carrier[J]. Journal of Applied Polymer Science, 2010, 118(3): 1743-1751. |
15 | Choi M, Kleitz F, Liu D N, et al. Controlled polymerization in mesoporous silica toward the design of organic-inorganic composite nanoporous materials[J]. Journal of the American Chemical Society, 2005, 127(6): 1924-1932. |
16 | 吴雁捷. SiO2/聚苯乙烯复合材料的制备与乙烯聚合研究 [D]. 宁波:宁波大学, 2020. |
Wu Y J. Preparation of SiO2/polystyrene composite and study on ethylene polymerization[D]. Ningbo: Ningbo University, 2020. | |
17 | Sifri R J, Padilla-Vélez O, Coates G W, et al. Controlling the shape of molecular weight distributions in coordination polymerization and its impact on physical properties[J]. Journal of the American Chemical Society, 2020, 142(3):1443-1448. |
18 | Chen M, Chen Y M, Li W, et al. Synthesis of weakly entangled ultra-high-molecular-weight polyethylene with a fine particle size[J]. Industrial & Engineering Chemistry Research, 2021, 60(8): 3354-3362. |
19 | Li W, Hui L, Xue B, et al. Facile high-temperature synthesis of weakly entangled polyethylene using a highly activated Ziegler-Natta catalyst[J]. Journal of Catalysis, 2018, 360: 145-151. |
20 | Li W, Yang H Q, Zhang J J, et al. Immobilization of isolated FI catalyst on polyhedral oligomeric silsesquioxane-functionalized silica for the synthesis of weakly entangled polyethylene[J]. Chemical Communications, 2016, 52(74): 11092-11095. |
21 | de Camargo Forte M M, da Cunha F V, dos Santos J H Z. Characterization and evaluation of the nature of chemical species generated in hybrid Ziegler-Natta/metallocene catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2001, 175(1/2): 91-103. |
22 | 陈毓明. 低缠结UHMWPE的制备及其与HDPE原位共混行为的研究[D]. 杭州:浙江大学, 2020. |
Chen Y M. The synthesis of weakly entangled UHMWPE and its in-situ blending with HDPE[D]. Hangzhou: Zhejiang University, 2020. | |
23 | Hikosaka M, Watanabe K, Okada K, et al. Topological mechanism of polymer nucleation and growth—the role of chain sliding diffusion and entanglement[M]//Interphases and Mesophases in Polymer Crystallization Ⅲ. Berlin/Heidelberg: Springer-Verlag, 2005: 137-186. |
24 | Liang P, Li W, Chen Y M, et al. Revealing the dynamic behaviors of tetrahydrofuran for tailoring the active species of Ziegler-Natta catalysts[J]. ACS Catalysis, 2021, 11(8), 4411-4421. |
25 | Liu K S, de Boer E L, Yao Y F, et al. Heterogeneous distribution of entanglements in a nonequilibrium polymer melt of UHMWPE: influence on crystallization without and with graphene oxide[J]. Macromolecules, 2016, 49(19): 7497-7509. |
26 | Litvinov V M, Ries M E, Baughman T W, et al. Chain entanglements in polyethylene melts. Why is it studied again?[J]. Macromolecules, 2013, 46(2): 541-547. |
27 | Zhang Y, Di Y T, Ye C L, et al. Morphology evolution and mechanical property enhancement of linear low-density polyethylene by adding disentangled ultrahigh molecular weight polyethylene[J]. Polymers for Advanced Technologies, 2022, 33(4): 1047-1056. |
28 | Patel K, Chikkali S H, Sivaram S. Ultrahigh molecular weight polyethylene: catalysis, structure, properties, processing and applications[J]. Progress in Polymer Science, 2020, 109: 101290. |
29 | Stürzel M, Thomann Y, Enders M, et al. Graphene-supported dual-site catalysts for preparing self-reinforcing polyethylene reactor blends containing UHMWPE nanoplatelets and in situ UHMWPE shish-kebab nanofibers[J]. Macromolecules, 2014, 47(15): 4979-4986. |
30 | Tanase S, Yabunouchi N, Konakazawa T, et al. Magnesium compound, solid catalyst component, olefin polymerization catalyst, and method for producing olefin polymer: US20070219326[P]. 2007-09-20. |
31 | Galli P, Haylock J C. Advances in Ziegler-Natta polymerization-unique polyolefin copolymers, alloys and blends made directly in the reactor[J]. Makromolekulare Chemie Macromolecular Symposia, 1992, 63(1): 19-54. |
32 | Baier M C, Zuideveld M A, Mecking S. Post-metallocenes in the industrial production of polyolefins[J]. Angewandte Chemie (International Ed. in English), 2014, 53(37): 9722-9744. |
33 | Kageyama K, Tamazawa J, Aida T. Extrusion polymerization: catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica[J]. Science, 1999, 285(5436): 2113-2115. |
34 | Zhang H, Zhao S C, Yu X, et al. Nascent particle sizes and degrees of entanglement are responsible for the significant differences in impact strength of ultrahigh molecular weight polyethylene[J]. Journal of Polymer Science Part B: Polymer Physics, 2019, 57(10): 632-641. |
[1] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[2] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[3] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[4] | Hao CHEN, Yijuan TIAN, Xuejun QUAN, Ziwen JIANG, Gang LI. Decomposition behaviour of chromite in the HCl-HF system [J]. CIESC Journal, 2023, 74(3): 1161-1174. |
[5] | Yuming CHEN, Wei LI, Xiang YAN, Jingdai WANG, Yongrong YANG. Research progress on regulation of aggregation structure for nascent polyethylene [J]. CIESC Journal, 2023, 74(2): 487-499. |
[6] | Yuehui HOU, Xuan LIU, Yingjiang LIAN, Mei HAN, Chaoqun YAO, Guangwen CHEN. Synthesis process of trinitrophloroglucinol in an ultrasonic microreactor [J]. CIESC Journal, 2022, 73(8): 3597-3607. |
[7] | Xiaoqiang FAN, Zhengliang HUANG, Jingyuan SUN, Jingdai WANG, Xiaofei WANG, Xiaobo HU, Guodong HAN, Yongrong YANG, Wenqing WU. Development of cloudy gas-liquid fluidized bed ethylene polymerization process and high performance products [J]. CIESC Journal, 2022, 73(6): 2742-2747. |
[8] | Mengxi LIU, Yiping FAN, Zihan YAN, Xiuying YAO, Chunxi LU. Regulation and industrial application of gas jet hydrodynamic behavior in a feedstock injection zone of a riser [J]. CIESC Journal, 2022, 73(6): 2496-2513. |
[9] | Chenyang ZHOU, Ying JIA, Yuemin ZHAO, Yong ZHANG, Zhijie FU, Yuqing FENG, Chenlong DUAN. Intensification of dry dense medium fluidization separation process from a mesoscale perspective [J]. CIESC Journal, 2022, 73(6): 2452-2467. |
[10] | Shiyi GE, Yao YANG, Zhengliang HUANG, Jingyuan SUN, Jingdai WANG, Yongrong YANG. Analyzing particle growth and morphology evolution of polyethylene based on electrostatic separation [J]. CIESC Journal, 2022, 73(4): 1585-1596. |
[11] | Lixia WANG, Zhaojie BI, Miaolei SHI, Chen WANG, Dongfang WANG, Qian LI. Effect of blending mode and ratio of UHMWPE/PEG on the entanglement behavior and properties of UHMWPE [J]. CIESC Journal, 2022, 73(2): 933-940. |
[12] | GAO Shuaitao, LIU Xueke, ZHANG Li, LIU Fen, YU Jiang, SHANG Jianfeng, OU Tianxiong, ZHOU Zheng, CHEN Pingwen. Aspen Plus simulation on selective separation of high concentration acid gas of H2S and CO2 [J]. CIESC Journal, 2021, 72(S1): 413-420. |
[13] | ZHANG Yashuang, LI Hong, CONG Haifeng, HAN Hongming, LI Xingang, GAO Xin. Numerical simulation of microwave-enhanced spiral liquid-bridge falling film evaporator [J]. CIESC Journal, 2021, 72(S1): 227-235. |
[14] | Xingchu HE,Dezhen CHEN,Zhenfei MEI,Batuer ADILI,Qing AN. ReaxFF MD study on the pyrolysis of PE catalyzed by CaO and the effect of H2O on the catalytic process and mechanism analysis [J]. CIESC Journal, 2021, 72(9): 4665-4674. |
[15] | CHU Guangwen,LIAO Honggang,WANG Dan,LI Hui,LI Sa,JIANG Hong,JIN Wanqin,CHEN Jianfeng. Gas-liquid reaction process intensification at micro-/nano-mesoscale [J]. CIESC Journal, 2021, 72(7): 3435-3444. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 300
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 226
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||