CIESC Journal ›› 2023, Vol. 74 ›› Issue (8): 3485-3493.DOI: 10.11949/0438-1157.20230726
• Energy and environmental engineering • Previous Articles Next Articles
Wenxiang NI1,2(), Jing ZHAO2(), Bo LI2, Xiaolin WEI2, Dongyin WU1, Di LIU1, Qiang WANG3
Received:
2023-07-13
Revised:
2023-08-06
Online:
2023-10-18
Published:
2023-08-25
Contact:
Jing ZHAO
倪文翔1,2(), 赵京2(), 李博2, 魏小林2, 吴东垠1, 刘迪1, 王强3
通讯作者:
赵京
作者简介:
倪文翔(1999—),男,硕士研究生,ni190725@163.com
基金资助:
CLC Number:
Wenxiang NI, Jing ZHAO, Bo LI, Xiaolin WEI, Dongyin WU, Di LIU, Qiang WANG. Study on waste heat boiler ash deposition characteristics in sensible heat recovery process of converter gas[J]. CIESC Journal, 2023, 74(8): 3485-3493.
倪文翔, 赵京, 李博, 魏小林, 吴东垠, 刘迪, 王强. 转炉煤气全干法显热回收工艺中余热锅炉积灰特性研究[J]. 化工学报, 2023, 74(8): 3485-3493.
氧化物 | 占比/% | 元素 | 占比/% | ||||
---|---|---|---|---|---|---|---|
30~70 μm | 70~100 μm | 100 μm以上 | 30~70 μm | 70~100 μm | 100 μm以上 | ||
Fe2O3 | 84.513 | 84.295 | 84.929 | Fe | 85.776 | 85.719 | 86.058 |
CaO | 7.309 | 6.982 | 6.46 | Ca | 6.926 | 6.622 | 6.121 |
MgO | 0.729 | 1.354 | 0.754 | K | 1.796 | 1.761 | 1.77 |
SiO2 | 0.812 | 0.788 | 0.885 | Zn | 1.298 | 1.272 | 1.314 |
MnO2 | 1.235 | 1.221 | 1.235 | Mn | 1.094 | 1.083 | 1.092 |
K2O | 1.649 | 1.615 | 1.625 | Cl | 0.654 | 0.641 | 0.656 |
ClO | 0.967 | 0.948 | 0.971 | Co | 0.551 | 0.534 | 0.587 |
ZnO | 1.086 | 1.062 | 1.102 | Mg | 0.549 | 1.021 | 0.568 |
P2O5 | 0.439 | 0.454 | 0.439 | Si | 0.479 | 0.465 | 0.521 |
CoO | 0.472 | 0.456 | 0.504 | P | 0.243 | 0.252 | 0.243 |
Al2O3 | 0.137 | 0.251 | 0.083 | Al | 0.091 | 0.166 | 0.055 |
SO3 | 0.25 | 0.239 | 0.246 | S | 0.128 | 0.122 | 0.126 |
其他 | 0.402 | 0.335 | 0.767 | 其他 | 0.415 | 0.342 | 0.889 |
总计 | 100 | 100 | 100 | 总计 | 100 | 100 | 100 |
Table 1 Elemental and oxide analysis of samples
氧化物 | 占比/% | 元素 | 占比/% | ||||
---|---|---|---|---|---|---|---|
30~70 μm | 70~100 μm | 100 μm以上 | 30~70 μm | 70~100 μm | 100 μm以上 | ||
Fe2O3 | 84.513 | 84.295 | 84.929 | Fe | 85.776 | 85.719 | 86.058 |
CaO | 7.309 | 6.982 | 6.46 | Ca | 6.926 | 6.622 | 6.121 |
MgO | 0.729 | 1.354 | 0.754 | K | 1.796 | 1.761 | 1.77 |
SiO2 | 0.812 | 0.788 | 0.885 | Zn | 1.298 | 1.272 | 1.314 |
MnO2 | 1.235 | 1.221 | 1.235 | Mn | 1.094 | 1.083 | 1.092 |
K2O | 1.649 | 1.615 | 1.625 | Cl | 0.654 | 0.641 | 0.656 |
ClO | 0.967 | 0.948 | 0.971 | Co | 0.551 | 0.534 | 0.587 |
ZnO | 1.086 | 1.062 | 1.102 | Mg | 0.549 | 1.021 | 0.568 |
P2O5 | 0.439 | 0.454 | 0.439 | Si | 0.479 | 0.465 | 0.521 |
CoO | 0.472 | 0.456 | 0.504 | P | 0.243 | 0.252 | 0.243 |
Al2O3 | 0.137 | 0.251 | 0.083 | Al | 0.091 | 0.166 | 0.055 |
SO3 | 0.25 | 0.239 | 0.246 | S | 0.128 | 0.122 | 0.126 |
其他 | 0.402 | 0.335 | 0.767 | 其他 | 0.415 | 0.342 | 0.889 |
总计 | 100 | 100 | 100 | 总计 | 100 | 100 | 100 |
Fig.2 Adhesion strength test1—deposited ash sample; 2—mould; 3—press machine; 4—floating shelf; 5—gas supply system; 6—rocker; 7—gas in; 8—tube furnace; 9—gas out; 10—forcemeter; 11—laptop
元素 | 质量/% | 原子/% |
---|---|---|
Mg | 1.46 | 3.19 |
Si | 1.49 | 2.82 |
P | 0.15 | 0.25 |
S | 0.21 | 0.34 |
Cl | 0.47 | 0.71 |
K | 2.41 | 3.28 |
Ca | 2.28 | 3.03 |
Mn | 2.76 | 2.67 |
Fe | 81.6 | 77.7 |
Co | 1.75 | 1.58 |
Zn | 5.42 | 4.41 |
总计 | 100 | 100 |
Table 2 SEM-EDS results of the proportion of main elements in PM1 ash deposition
元素 | 质量/% | 原子/% |
---|---|---|
Mg | 1.46 | 3.19 |
Si | 1.49 | 2.82 |
P | 0.15 | 0.25 |
S | 0.21 | 0.34 |
Cl | 0.47 | 0.71 |
K | 2.41 | 3.28 |
Ca | 2.28 | 3.03 |
Mn | 2.76 | 2.67 |
Fe | 81.6 | 77.7 |
Co | 1.75 | 1.58 |
Zn | 5.42 | 4.41 |
总计 | 100 | 100 |
1 | 王海风, 平晓东, 周继程, 等. 中国钢铁工业绿色发展回顾及展望[J]. 钢铁, 2023, 58(2): 8-18. |
Wang H F, Ping X D, Zhou J C, et al. Review and prospect of green development of iron and steel industry in China[J]. Iron & Steel, 2023, 58(2): 8-18. | |
2 | Zhou J N, Jiang X K, Xie J B, et al. Thermodynamic analysis of improvement of converter gas by injecting pulverized coal into vaporization cooling flue[J]. Journal of Iron and Steel Research International, 2018, 25(1): 65-71. |
3 | 张福明, 张德国, 张凌义, 等. 大型转炉煤气干法除尘技术研究与应用[J]. 钢铁, 2013, 48(2): 1-9, 43. |
Zhang F M, Zhang D G, Zhang L Y, et al. Research and application on large BOF gas dry dedusting technology[J]. Iron & Steel, 2013, 48(2): 1-9, 43. | |
4 | 魏小林, 余立新, 陈恩鉴, 等. 炼钢转炉煤气干法回收及其显热发电系统: 101245400B[P]. 2010-07-21. |
Wei X L, Yu L X, Chen E J, et al. Dry recovery of gas from steel converter and its sensible heat power generation system: 101245400B[P]. 2010-07-21. | |
5 | 黄成永, 汤先岗, 魏传岱, 等. 转炉炼钢一次除尘蒸发冷却器严重积灰问题及解决方案[J]. 环境工程, 2019, 37(5): 146-149. |
Huang C Y, Tang X G, Wei C D, et al. Serious dust accumulation problem and its solution of primary dust removal evaporation cooler for converter steelmaking[J]. Environmental Engineering, 2019, 37(5): 146-149. | |
6 | 李森. 冶金炉炉气和烟气的发生、流动和反应过程研究[D]. 北京: 中国科学院力学所研究所, 2010. |
Li S. Study on the generation, flow and reaction process of furnace gas and flue gas in metallurgical furnace[D]. Beijing: Institute of Mechanics, Chinese Academy of Sciences, 2010. | |
7 | 于恒, 黄细聪, 李科, 等. 钢铁企业除尘灰综合利用现状与展望[J]. 矿产保护与利用, 2021, 41(4): 164-171. |
Yu H, Huang X C, Li K, et al. Present situation and prospect of comprehensive utilization of precipitator dust in iron and steel enterprises[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 164-171. | |
8 | Nedar L. Dust formation in a BOF converter[J]. Steel Research, 1996, 67(8): 320-327. |
9 | Lv M, Li H, Lin T C, et al. Behavior of gas-slag-metal emulsion with nozzle-twisted lance in converter steelmaking process[J]. Steel Research International, 2021, 92(10): 2100103. |
10 | Babat S, Spörl R, Maier J, et al. Investigation of deposit formation and its characterization for a pulverized bituminous coal power plant[J]. Fuel Processing Technology, 2016, 141: 225-234. |
11 | Laxminarayan Y, Jensen P A, Wu H, et al. Deposit shedding in biomass-fired boilers: shear adhesion strength measurements[J]. Energy & Fuels, 2017, 31(8): 8733-8741. |
12 | Salmenoja K, Makela K. Prevention of superheater corrosion in the combustion of biofuels[C]// Proceedings of the NACE International, 2000. |
13 | 谷国富. 锅炉蒸汽吹灰、声波吹灰和燃气高能脉冲吹灰的技术经济比较[J]. 应用能源技术, 2004(1): 18-21. |
Gu G F. Technical and economic comparison of boiler steam soot blowing, acoustic soot blowing and gas high-energy pulse soot blowing[J]. Applied Energy Technology, 2004(1): 18-21. | |
14 | 姚纪恒, 冯景源, 罗红新. 锅炉蒸汽吹灰、声波吹灰和高能燃气脉冲吹灰的技术经济比较[J]. 锅炉技术, 2001, 32(12): 26-30. |
Yao J H, Feng J Y, Luo H X. Technical economy comparison for boiler steam soot-blowing, acoustic soot-blowing and high gas pulse soot-blowing[J]. Boiler Technology, 2001, 32(12): 26-30. | |
15 | Zhou Y, Zhu R, Wei G S. Recent advancements in source reduction and recycling technologies for converter dust[J]. Energy Reports, 2022, 8: 7274-7285. |
16 | 赵京, 张玉锋, 魏小林, 等. 高碱煤燃烧过程中亚微米颗粒物PM1的生成特性[J]. 化工学报, 2019, 70(8): 3113-3120. |
Zhao J, Zhang Y F, Wei X L, et al. PM1 formation characteristics during high-alkali coal combustion[J]. CIESC Journal, 2019, 70(8): 3113-3120. | |
17 | Zhan Z H, Fry A, Zhang Y W, et al. Ash aerosol formation from oxy-coal combustion and its relation to ash deposit chemistry[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2373-2380. |
18 | 阮仁晖, 谭厚章, 王学斌, 等. 高碱煤燃烧过程细颗粒物排放特性[J]. 煤炭学报, 2017, 42(4): 1056-1062. |
Ruan R H, Tan H Z, Wang X B, et al. Characteristics of fine particulate matter released from burning coal with high content of alkali and alkaline earth metal[J]. Journal of China Coal Society, 2017, 42(4): 1056-1062. | |
19 | Seames W S. An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion[J]. Fuel Processing Technology, 2003, 81(2): 109-125. |
20 | Linak W P, Miller C A, Seames W S, et al. On trimodal particle size distributions in fly ash from pulverized-coal combustion[J]. Proceedings of the Combustion Institute, 2002, 29(1): 441-447. |
21 | Marner W J. Progress in gas-side fouling of heat-transfer surfaces: 1989—1995[J]. Applied Mechanics Reviews, 1996, 49(10S): S161-S166. |
22 | Shimogori M, Mine T, Ohyatsu N, et al. Effects of fine ash particles and alkali metals on ash deposition characteristics at the initial stage of ash deposition determined in 1.5 MWth pilot plant tests[J]. Fuel, 2012, 97: 233-240. |
23 | Barroso J, Ballester J, Ferrer L M, et al. Study of coal ash deposition in an entrained flow reactor: influence of coal type, blend composition and operating conditions[J]. Fuel Processing Technology, 2006, 87(8): 737-752. |
24 | Dehbi A. A stochastic Langevin model of turbulent particle dispersion in the presence of thermophoresis[J]. International Journal of Multiphase Flow, 2009, 35(3): 219-226. |
25 | Mueller C, Selenius M, Theis M, et al. Deposition behaviour of molten alkali-rich fly ashes—development of a submodel for CFD applications[J]. Proceedings of the Combustion Institute, 2005, 30(2): 2991-2998. |
26 | Han H, He Y L, Tao W Q, et al. A parameter study of tube bundle heat exchangers for fouling rate reduction[J]. International Journal of Heat and Mass Transfer, 2014, 72: 210-221. |
27 | 马永明, 连国旺. 闪速炉炼铜中渣四氧化三铁的来源与控制[J]. 有色金属科学与工程, 2019, 10(2): 25-30. |
Ma Y M, Lian G W. The source and control strategy of the magnetite in copper flash smelting[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 25-30. | |
28 | Naruse I, Kamihashira D, Miyauchi Y, et al. Fundamental ash deposition characteristics in pulverized coal reaction under high temperature conditions[J]. Fuel, 2005, 84(4): 405-410. |
29 | Venturini P, Borello D, Hanjalić K, et al. Modelling of particles deposition in an environment relevant to solid fuel boilers[J]. Applied Thermal Engineering, 2012, 49: 131-138. |
30 | Abd-Elhady M S, Malayeri M R, Müller-Steinhagen H. Fouling problems in exhaust gas recirculation coolers in the automotive industry[J]. Heat Transfer Engineering, 2011, 32(3/4): 248-257. |
31 | Skrifvars B J, Hupa M, Backman R, et al. Sintering mechanisms of FBC ashes[J]. Fuel, 1994, 73(2): 171-176. |
32 | Bar-Ziv E, Berman Y, Saveliev R, et al. Fouling formation in 575 MW tangential-fired pulverized-coal boiler[C]//Proceedings of ASME 2009 Power Conference. Albuquerque, New Mexico, USA, 2010: 19-25. |
33 | Conn R, Jones M L. Comparison of low-rank coal ash sintering characteristics with pilot plant ash fouling tendencies[C]// Conference on Slagging and Fouling Due to Impurities in Combustion Gases. Copper Mountain, CO, USA, 1984. |
34 | 刘鹏宇, 李德波, 刘彦丰, 等. 燃煤电厂锅炉机组受热面积灰结渣研究现状与展望[J]. 洁净煤技术, 2022, 28(5): 87-96. |
Liu P Y, Li D B, Liu Y F, et al. Current status and prospects of research on ash slagging in heated area of coal-fired power plant boiler unit[J]. Clean Coal Technology, 2022, 28(5): 87-96. |
[1] | Dongwang ZHANG, Hairui YANG, Tuo ZHOU, Zhong HUANG, Shiyuan LI, Man ZHANG. Cold-state experimental study on ash deposition of convection heating surface of biomass boiler [J]. CIESC Journal, 2022, 73(8): 3731-3738. |
[2] | PENG Yan, ZHAO Qinxin, WANG Weishu. Ash deposition characteristics of external surface of flue gas swept across tube bundles [J]. CIESC Journal, 2018, 69(12): 5034-5041. |
[3] | LI Jinbo, WANG Peili, CHENG Lin. Characteristics of ash deposition on a novel heat transfer surface [J]. CIESC Journal, 2016, 67(9): 3598-3606. |
[4] | LIU Bing,TIAN Jing. Progress in effects of coal properties on entrained-flow gasification [J]. Chemical Industry and Engineering Progree, 2012, 31(10): 2191-2196. |
[5] | WU Zhen,SUN Jieyang,GUO Qing. Special modification of urea-formaldehyde adhesive [J]. , 2006, 25(2): 187-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 500
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 207
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||