CIESC Journal ›› 2023, Vol. 74 ›› Issue (8): 3472-3484.DOI: 10.11949/0438-1157.20230348
• Biochemical engineering and technology • Previous Articles Next Articles
Lingding MENG(), Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU(
)
Received:
2023-04-10
Revised:
2023-06-22
Online:
2023-10-18
Published:
2023-08-25
Contact:
Wenfang LIU
通讯作者:
刘文芳
作者简介:
孟令玎(1998—),女,硕士研究生,15520711215@163.com
CLC Number:
Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica[J]. CIESC Journal, 2023, 74(8): 3472-3484.
孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484.
Samples | Zeta potential/mV |
---|---|
SiO2 | -51.5 |
PDA/PEI-SiO2 | +71.6 |
KH550-SiO2 | +20.5 |
KH560-SiO2 | -24.1 |
Table 1 Surface Zeta potential of SiO2 before and after modification
Samples | Zeta potential/mV |
---|---|
SiO2 | -51.5 |
PDA/PEI-SiO2 | +71.6 |
KH550-SiO2 | +20.5 |
KH560-SiO2 | -24.1 |
Supports | mCA/mg | ( (mg/mg) | Ref. | |
---|---|---|---|---|
Free CA | 12.84 | 0.2 | 64.2 | this work |
PDA/PEI-SiO2 | 15.68 | 0.2 | 78.4 | this work |
PDA/PEI-PE | 9.33 | 0.2 | 46.6 | this work |
Mesoporous aluminosilicate | 16.14 | 1 | 16.1 | [ |
Alumino-siloxane aerogel beads | 12 | 0.017 | 705.9 | [ |
KH550-PVDF | ~8 | 0.8 | 10.0 | [ |
KH560-PVDF | ~6 | 0.8 | 7.5 | [ |
Table 2 CO2 sequestration performance of immobilized CA
Supports | mCA/mg | ( (mg/mg) | Ref. | |
---|---|---|---|---|
Free CA | 12.84 | 0.2 | 64.2 | this work |
PDA/PEI-SiO2 | 15.68 | 0.2 | 78.4 | this work |
PDA/PEI-PE | 9.33 | 0.2 | 46.6 | this work |
Mesoporous aluminosilicate | 16.14 | 1 | 16.1 | [ |
Alumino-siloxane aerogel beads | 12 | 0.017 | 705.9 | [ |
KH550-PVDF | ~8 | 0.8 | 10.0 | [ |
KH560-PVDF | ~6 | 0.8 | 7.5 | [ |
1 | Talekar S, Jo B H, Dordick J S, et al. Carbonic anhydrase for CO2 capture, conversion and utilization[J]. Current Opinion in Biotechnology, 2022, 74: 230-240. |
2 | Asif M, Suleman M, Haq I, et al. Post-combustion CO2 capture with chemical absorption and hybrid system: current status and challenges[J]. Greenhouse Gases: Science and Technology, 2018, 8(6): 998-1031. |
3 | Saeed I M, Alaba P, Mazari S A, et al. Opportunities and challenges in the development of monoethanolamine and its blends for post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2018, 79: 212-233. |
4 | Bernhardsen I M, Knuutila H K. A review of potential amine solvents for CO2 absorption process: absorption capacity, cyclic capacity and pKa [J]. International Journal of Greenhouse Gas Control, 2017, 61: 27-48. |
5 | Aghel B, Janati S, Wongwises S, et al. Review on CO2 capture by blended amine solutions[J]. International Journal of Greenhouse Gas Control, 2022, 119: 103715. |
6 | 梁珊, 宗敏华, 娄文勇. 酶法催化二氧化碳制备高附加值化学品研究进展[J]. 化学学报, 2019, 77(11): 1099-1114. |
Liang S, Zong M H, Lou W Y. Recent advances in enzymatic catalysis for preparation of high value-added chemicals from carbon dioxide[J]. Acta Chimica Sinica, 2019, 77(11): 1099-1114. | |
7 | Sun M K, Alkon D L. Carbonic anhydrase gating of attention: memory therapy and enhancement[J]. Trends in Pharmacological Sciences, 2002, 23(2): 83-89. |
8 | Sharma T, Sharma S, Kamyab H, et al. Energizing the CO2 utilization by chemo-enzymatic approaches and potentiality of carbonic anhydrases: a review[J]. Journal of Cleaner Production, 2020, 247: 119138. |
9 | 孟令玎, 毛梦雷, 廖奇勇 等. 碳酸酐酶和甲酸脱氢酶的稳定性研究进展[J]. 化工进展, 2022, 41(S1): 436-447. |
Meng L D, Mao M L, Liao Q Y, et al. Recent advance in stability of carbonic anhydrase and formate dehydrogenase[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 436-447. | |
10 | De Oliveira Maciel A, Christakopoulos P, Rova U, et al. Carbonic anhydrase to boost CO2 sequestration: improving carbon capture utilization and storage (CCUS)[J]. Chemosphere, 2022, 299: 134419. |
11 | Molina-Fernández C, Luis P. Immobilization of carbonic anhydrase for CO2 capture and its industrial implementation: a review[J]. Journal of CO2 Utilization, 2021, 47: 101475. |
12 | Rasouli H, Iliuta I, Bougie F, et al. Enzyme-immobilized flat-sheet membrane contactor for green carbon capture[J]. Chemical Engineering Journal, 2021, 421: 129587. |
13 | Sun J, Wei L, Wang Y, et al. Immobilization of carbonic anhydrase on polyvinylidene fluoride membranes[J]. Biotechnology and Applied Biochemistry, 2018, 65(3): 362-371. |
14 | Shen J, Yuan Y, Salmon S. Carbonic anhydrase immobilized on textile structured packing using chitosan entrapment for CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(23): 7772-7785. |
15 | Rasouli H, Iliuta I, Bougie F, et al. Enhanced CO2 capture in packed-bed column bioreactors with immobilized carbonic anhydrase[J]. Chemical Engineering Journal, 2022, 432: 134029. |
16 | Chang S, He Y, Li Y, et al. Study on the immobilization of carbonic anhydrases on geopolymer microspheres for CO2 capture[J]. Journal of Cleaner Production, 2021, 316: 128163. |
17 | Fei X, Chen S, Liu D, et al. Comparison of amino and epoxy functionalized SBA-15 used for carbonic anhydrase immobilization[J]. Journal of Bioscience and Bioengineering, 2016, 122(3): 314-321. |
18 | Xu J, Zhang Z, Pang S, et al. Accelerated CO2 capture using immobilized carbonic anhydrase on polyethyleneimine/dopamine co-deposited MOFs[J]. Biochemical Engineering Journal, 2022, 189: 108719. |
19 | Wang Y, Chen Y, Wang C, et al. Polyethylenimine-modified membranes for CO2 capture and in situ hydrogenation[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 29003-29009. |
20 | Sun J, Wang C, Wang Y, et al. Immobilization of carbonic anhydrase on polyethylenimine/dopamine codeposited membranes[J]. Journal of Applied Polymer Science, 2019, 136(29): 47784. |
21 | 王彩红, 孙婧, 季书馨 等. 聚乙烯亚胺/多巴胺改性氧化硅固定碳酸酐酶[J]. 化工学报, 2019, 70(5): 1887-1893. |
Wang C H, Sun J, Ji S X, et al. Immobilization of carbonic anhydrase on polyethylenimine/dopamine co-deposited SiO2 [J]. CIESC Journal, 2019, 70(5): 1887-1893. | |
22 | Zhang Q, Huang R, Guo L H. One-step and high-density protein immobilization on epoxysilane-modified silica nanoparticles[J]. Chinese Science Bulletin, 2009, 54(15): 2620-2626. |
23 | Ozdemir E. Biomimetic CO2 sequestration: 1. Immobilization of carbonic anhydrase within polyurethane foam[J]. Energy & Fuels, 2009, 23(11): 5725-5730. |
24 | Yang H C, Liao K J, Huang H, et al. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation[J]. Journal of Materials Chemistry A, 2014, 2(26): 10225-10230. |
25 | Lü Y, Lu G, Wang Y, et al. Functionalization of cubic Ia3d mesoporous silica for immobilization of penicillin G acylase[J]. Advanced Functional Materials, 2007, 17(13): 2160-2166. |
26 | Bamane P B, Jagtap R N. Synthesis of the hydrophilic additive by grafting glycidyloxypropyl trimethoxysilane on hydrophilic nanosilica and its modification by using dimethyl propionic acid for self-cleaning coatings[J]. Colloid and Interface Science Communications, 2021, 43: 100444. |
27 | Hou J, Ji C, Dong G, et al. Biocatalytic Janus membranes for CO2 removal utilizing carbonic anhydrase[J]. Journal of Materials Chemistry A, 2015, 3(33): 17032-17041. |
28 | Jun S H, Yang J, Jeon H, et al. Stabilized and immobilized carbonic anhydrase on electrospun nanofibers for enzymatic CO2 conversion and utilization in expedited microalgal growth[J]. Environmental Science & Technology, 2020, 54(2): 1223-1231. |
29 | Lee H, Dellatore Shara M, Miller William M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430. |
30 | Dai M, Huang T, Chao L, et al. Horseradish peroxidase-catalyzed polymerization of l-DOPA for mono-/bi-enzyme immobilization and amperometric biosensing of H2O2 and uric acid[J]. Talanta, 2016, 149: 117-123. |
31 | Hou J, Dong G, Xiao B, et al. Preparation of titania based biocatalytic nanoparticles and membranes for CO2 conversion[J]. Journal of Materials Chemistry A, 2015, 3(7): 3332-3342. |
32 | Shao P, Chen H, Ying Q, et al. Structure–activity relationship of carbonic anhydrase enzyme immobilized on various silica-based mesoporous molecular sieves for CO2 absorption into a potassium carbonate solution[J]. Energy & Fuels, 2020, 34(2): 2089-2096. |
33 | Cantone S, Ferrario V, Corici L, et al. Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods[J]. Chemical Society Reviews, 2013, 42(15): 6262-6276. |
34 | Jing G, Pan F, Lv B, et al. Immobilization of carbonic anhydrase on epoxy-functionalized magnetic polymer microspheres for CO2 capture[J]. Process Biochemistry, 2015, 50(12): 2234-2241. |
35 | Wanjari S, Prabhu C, Yadav R, et al. Immobilization of carbonic anhydrase on chitosan beads for enhanced carbonation reaction[J]. Process Biochemistry, 2011, 46(4): 1010-1018. |
36 | Lavecchia R, Zugaro M. Thermal denaturation of erythrocyte carbonic anhydrase[J]. FEBS Letters, 1991, 292(1): 162-164. |
37 | Sarraf N S, Saboury A A, Ranjbar B, et al. Structural and functional changes of bovine carbonic anhydrase as a consequence of temperature[J]. Acta Biochimica Polonica, 2004, 51(3): 665-671. |
38 | Pocker Y, Stone J T. The catalytic versatility of erythrocyte carbonic anhydrase(Ⅲ): Kinetic studies of the enzyme-catalyzed hydrolysis of p-nitrophenyl acetate[J]. Biochemistry, 1967, 6(3): 668-678. |
39 | Reetz Manfred T, Sun Z, Qu G. Enzyme Engineering: Selective Catalysts for Applications in Biotechnology, Organic Chemistry, and Life Science [M]. Wiley-VCH GmbH, 2023. |
40 | 李宇彤, 白姝, 余林玲. PEI接枝纳米二氧化硅载体的构建及碳酸酐酶的固定化[J]. 离子交换与吸附, 2019, 35(4): 300-311. |
Li Y T, Bai S, Yu L L. Synthesis of polyethyleneimine-grafted silica nanoparticles and carbonic anhydrase immobilization[J]. Ion Exchange and Adsorption, 2019, 35(4): 300-311. | |
41 | Zhu Y, Li W, Sun G, et al. Enzymatic properties of immobilized carbonic anhydrase and the biocatalyst for promoting CO2 capture in vertical reactor[J]. International Journal of Greenhouse Gas Control, 2016, 49: 290-296. |
42 | Mao M, Zhai T, Meng L, et al. Controllable preparation of mesoporous silica and its application in enzyme-catalyzed CO2 reduction[J]. Chemical Engineering Journal, 2022, 437: 135479. |
43 | Ren S, Li C, Tan Z, et al. Carbonic anhydrase@ZIF-8 hydrogel composite membrane with improved recycling and stability for efficient CO2 capture[J]. Journal of Agricultural and Food Chemistry, 2019, 67(12): 3372-3379. |
44 | Gitlin I, Carbeck J D, Whitesides G M. Why are proteins charged? Networks of charge-charge interactions in proteins measured by charge ladders and capillary electrophoresis[J]. Angewandte Chemie International Edition, 2006, 45(19): 3022-3060. |
45 | Schofield K. Mercury emission control from coal combustion systems: a modified air preheater solution[J]. Combustion and Flame, 2012, 159(4): 1741-1747. |
46 | 朱轶林. 固定化碳酸酐酶的酶学性质和催化吸收CO2特性的实验研究[D]. 重庆: 重庆大学, 2015. |
Zhu Y L. Research on enzymatic proprities of immobilized carbonic anhydrase and CO2 catalytic absorption[D]. Chongqing: Chongqing University, 2015. | |
47 | Wu Y, Zhao X, Li P, et al. Impact of Zn, Cu, and Fe on the activity of carbonic anhydrase of erythrocytes in ducks[J]. Biological Trace Element Research, 2007, 118(3): 227-232. |
48 | Tan S I, Han Y L, Yu Y J, et al. Efficient carbon dioxide sequestration by using recombinant carbonic anhydrase[J]. Process Biochemistry, 2018, 73: 38-46. |
49 | Ramanan R, Kannan K, Sivanesan S D, et al. Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii [J]. World Journal of Microbiology and Biotechnology, 2009, 25(6): 981-987. |
50 | Kim Y K, Lee S Y, Oh B K. Enhancement of formic acid production from CO2 in formate dehydrogenase reaction using nanoparticles[J]. RSC Advances, 2016, 6(111): 109978-109982. |
51 | Wanjari S, Prabhu C, Satyanarayana T, et al. Immobilization of carbonic anhydrase on mesoporous aluminosilicate for carbonation reaction[J]. Microporous and Mesoporous Materials, 2012, 160: 151-158. |
52 | Shamna I, Kwan Jeong S, Margandan B. Covalent immobilization of carbonic anhydrase on amine functionalized alumino-siloxane aerogel beads for biomimetic sequestration of CO2 [J]. Journal of Industrial and Engineering Chemistry, 2021, 100: 288-295. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[3] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[4] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[5] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[6] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[7] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[8] | Wenchao XU, Zhigao SUN, Cuimin LI, Juan LI, Haifeng HUANG. Effect of surfactant E-1310 on the formation of HCFC-141b hydrate under static conditions [J]. CIESC Journal, 2023, 74(5): 2179-2185. |
[9] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[10] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[11] | Yuntong GE, Wei WANG, Kai LI, Fan XIAO, Zhipeng YU, Jing GONG. AFM study of the interaction forces between micro-oil droplets and modified silica surfaces in multiphase dispersion systems [J]. CIESC Journal, 2023, 74(4): 1651-1659. |
[12] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[13] | Xiangshang CHEN, Zhenjie MA, Xihua REN, Yue JIA, Xiaolong LYU, Huayan CHEN. Preparation and mass transfer efficiency of three-dimensional network extraction membrane [J]. CIESC Journal, 2023, 74(3): 1126-1133. |
[14] | Qian LIU, Yu CAO, Qi ZHOU, Jingshan MU, Wei LI. Design of Ziegler-Natta catalyst modified with pore structure and preparation of UHMWPE with high impact resistance and low entanglement [J]. CIESC Journal, 2023, 74(3): 1092-1101. |
[15] | Ruining HE, Yun ZOU, Meng SHI, Yang LI, Jing XU, Zhangfa TONG. Preparation of supported ionic liquid [HSO3-BMIM][HSO4]/SiO2 and its catalytic property in the esterification of acetic acid and ethanol [J]. CIESC Journal, 2022, 73(9): 3880-3894. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 607
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 214
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||