CIESC Journal ›› 2023, Vol. 74 ›› Issue (S1): 141-153.DOI: 10.11949/0438-1157.20221591
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Xiaoqing ZHOU(), Chunyu LI(), Guang YANG, Aifeng CAI, Jingyi WU
Received:
2022-11-12
Revised:
2022-12-23
Online:
2023-09-27
Published:
2023-06-05
Contact:
Chunyu LI
通讯作者:
李春煜
作者简介:
周晓庆(1998—),女,博士研究生,zhxiaoqing19@sjtu.edu.cn
基金资助:
CLC Number:
Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature[J]. CIESC Journal, 2023, 74(S1): 141-153.
周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153.
Add to citation manager EndNote|Ris|BibTeX
过冷度/℃ | Cmush |
---|---|
10 | 5×104 |
20 | 1×106 |
Table 1 Selection principal of viscosity coefficient Cmush (θ=140°)
过冷度/℃ | Cmush |
---|---|
10 | 5×104 |
20 | 1×106 |
Fig.8 Coverage diagram and flow field diagram of the icing interface and flow field diagram where droplets impact single and complex corrugated plates at 0.5 m/s (yellow color is employed in the flow field diagram to describe the water phase interface)
Fig.9 Dimensionless spreading radius curve and icing interface coverage curve of droplets impacting on single and complex corrugated plates at 2.0 m/s
Fig.14 Droplet icing coverage and droplet icing behavior of three curvature complex corrugated plates with a subcooling degree of 10℃ and 20℃ impacted by droplet 5.0 m/s
1 | He Z W, Jamil M I, Li T, et al. Enhanced surface icephobicity on an elastic substrate[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2022, 38(1): 18-35. |
2 | Bajpayee A, Rivera-Gonzalez N, Braham E J, et al. Multiscale textured mesh substrates that glide alcohol droplets and impede ice nucleation[J]. Advanced Engineering Materials, 2022, 24(8): 2101524. |
3 | Zhao C Y, Yan X, He W, et al. Exploring the limits of condensation heat transfer: a numerical study of microscale-confined condensation between parallel surfaces having wetting contrast[J]. International Journal of Heat and Mass Transfer, 2022, 193: 122758. |
4 | 张亚东, 张伟, 秦朔. 喷雾冷却换热机理研究进展[J]. 制冷技术, 2020, 40(1): 34-41, 53. |
Zhang Y D, Zhang W, Qin S. Research progress of spray cooling heat transfer mechanism[J]. Chinese Journal of Refrigeration Technology, 2020, 40(1): 34-41, 53. | |
5 | 邹同华, 申 江, 陈天及. 水平管外结冰特性的理论与实验研究[J]. 制冷技术, 2001, 21(3): 32-35. |
Zou T H, Shen J, Chen T J. Theory and experimental research of ice frozen characteristic outside horizontal tube[J]. Chinese Journal of Refrigeration Technology, 2001, 21(3): 32-35. | |
6 | 齐隽楠, 吴嘉峰, 陈亚平. 疏水表面蒸汽滴状冷凝传热实验分析[J]. 制冷技术, 2015, 35(3): 11-14. |
Qi J N, Wu J F, Chen Y P. Experimental analysis on dropwise condensation of steam on hydrophobic surfaces[J]. Chinese Journal of Refrigeration Technology, 2015, 35(3): 11-14. | |
7 | 武卫东, 吕婉豆, 汪德龙. 铝基超疏水表面凝露初期的实验研究[J]. 制冷技术, 2017, 37(1): 13-17. |
Wu W D, Lv W D, Wang D L. Experimental study on initial morphology of condensation on aluminum based super-hydrophobic surface[J]. Chinese Journal of Refrigeration Technology, 2017, 37(1): 13-17. | |
8 | Gomaa H, Tembely M, Esmail N, et al. Bouncing of cloud-sized microdroplets on superhydrophobic surfaces[J]. Physics of Fluids, 2020, 32(12): 122118. |
9 | Zhang H X, Yi X, Du Y X, et al. Dynamic behavior of water drops impacting on cylindrical superhydrophobic surfaces[J]. Physics of Fluids, 2019, 31(3): 032104. |
10 | Wang Y L, Wang Y X, Wang S R, et al. Droplet impact on cylindrical surfaces: effects of surface wettability, initial impact velocity, and cylinder size[J]. Journal of Colloid and Interface Science, 2020, 578: 207-217. |
11 | Liu X, Min J C, Zhang X. Dynamic behavior and maximum spreading of droplets impacting concave spheres[J]. Physics of Fluids, 2020, 32(9): 092109. |
12 | Zhang X, Ji B Q, Liu X, et al. Maximum spreading and energy analysis of ellipsoidal impact droplets[J]. Physics of Fluids, 2021, 33(5): 052108. |
13 | Hu Z F, Wu X M, Chu F Q, et al. Off-centered droplet impact on single-ridge superhydrophobic surfaces[J]. Experimental Thermal and Fluid Science, 2021, 120: 110245. |
14 | Sayyari M J, Naghedifar S A, Esfahani J A. Pinch-off location and time during 2D droplet impact onto a wetted stationary cylinder using the lattice Boltzmann method[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(3): 142. |
15 | Luo J, Wu S Y, Xiao L, et al. The maximum spreading lengths in circumferential and axial directions when droplets impact on cylindrical surfaces[J]. International Journal of Multiphase Flow, 2021, 143: 103774. |
16 | 罗佳, 吴双应, 肖兰, 等. 液滴撞击圆柱壁面后液膜最大扩展长度的理论分析[J]. 工程热物理学报, 2021, 42(12): 3254-3259. |
Luo J, Wu S Y, Xiao L, et al. Theoretical analysis for the maximum spreading lengths of liquid film after the droplet impacting on cylindrical surface[J]. Journal of Engineering Thermophysics, 2021, 42(12): 3254-3259. | |
17 | Zhang L Z, Wang Y B, Gao S R, et al. Re-touch rebound patterns and contact time for a droplet impacting a superhydrophobic cylinder[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 126: 359-370. |
18 | Luo J, Wu S Y, Xiao L, et al. Hydrodynamics and heat transfer of multiple droplets successively impacting on cylindrical surface[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121749. |
19 | 范隆杰, 吴晗, 岑春泽, 等. 高韦伯数液滴撞壁诱导的中间射流破碎现象[J]. 燃烧科学与技术, 2019, 25(3): 197-203. |
Fan L J, Wu H, Cen C Z, et al. Phenomenon of central jet breakage induced by high-Weber-number droplet impact[J]. Journal of Combustion Science and Technology, 2019, 25(3): 197-203. | |
20 | Liu Y Z, Wang T B, Song Z Y, et al. Spreading and freezing of supercooled water droplets impacting an ice surface[J]. Applied Surface Science, 2022, 583: 152374. |
21 | Chang S N, Qi H F, Zhou S, et al. Experimental study on freezing characteristics of water droplets on cold surfaces[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123108. |
22 | Kong W L, Wu H C, Bian P X, et al. A diffusion-enhancing icing theory for the freezing transition of supercooled large water droplet in impact[J]. International Journal of Heat and Mass Transfer, 2022, 187: 122471. |
23 | 范瑶, 王宏, 朱恂, 等. 壁面曲率及过冷度对液滴铺展特性的影响[J]. 化工学报, 2016, 67(7): 2709-2717. |
Fan Y, Wang H, Zhu X, et al. Effect of curvature and undercooling degree of surface on behavior of droplet spreading[J]. CIESC Journal, 2016, 67(7): 2709-2717. | |
24 | 李栋, 王鑫, 高尚文, 等. 单液滴撞击超疏水冷表面的反弹及破碎行为[J]. 化工学报, 2017, 68(6): 2473-2482. |
Li D, Wang X, Gao S W, et al. Rebounding and splashing behavior of single water droplet impacting on cold superhydrophobic surface[J]. CIESC Journal, 2017, 68(6): 2473-2482. | |
25 | Vahab M, Murphy D, Shoele K. Fluid dynamics of frozen precipitation at the air-water interface[J]. Journal of Fluid Mechanics, 2022, 933: A36. |
26 | 周鑫, 邓乐东, 王宏, 等. 圆柱壁面上液滴凝固相变对其运动行为的影响[J]. 化工学报, 2019, 70(3): 883-891. |
Zhou X, Deng L D, Wang H, et al. Effect of cooled cylindrical surface on droplet dynamic behavior[J]. CIESC Journal, 2019, 70(3): 883-891. | |
27 | Hu A J, Liu D. 3D simulation of micro droplet impact on the structured superhydrophobic surface[J]. International Journal of Multiphase Flow, 2022, 147: 103887. |
28 | Li R, Zhu P Z, Yin Z H, et al. Molecular dynamics simulation of nanodroplets impacting stripe-textured surfaces[J]. Langmuir, 2022, 38(22): 7058-7066. |
29 | Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. |
30 | Bae J, Yee K. Numerical investigation of droplet breakup effects on droplet-wall interactions under SLD conditions[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(5): 1005-1018. |
31 | Blake J, Thompson D, Raps D, et al. Simulating the freezing of supercooled water droplets impacting a cooled substrate[J]. AIAA Journal, 2015, 53(7): 1725-1739. |
32 | Liu X, Zhang X, Min J C. Maximum spreading of droplets impacting spherical surfaces[J]. Physics of Fluids, 2019, 31(9): 092102. |
33 | Banitabaei S A, Amirfazli A. Droplet impact onto a solid sphere: effect of wettability and impact velocity[J]. Physics of Fluids, 2017, 29(6): 062111. |
34 | Meng Z N, Zhang P. Dynamic propagation of ice-water phase front in a supercooled water droplet[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119468. |
35 | Zhang R, Hao P F, Zhang X W, et al. Tunable droplet breakup dynamics on micropillared superhydrophobic surfaces[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2018, 34(26): 7942-7950. |
[1] | LI Huijun, LI Dong, WANG Yeku, PENG Wenping. Effect of the curvature of the special-shaped tube on gas-liquid film distribution and condensation heat transfer characteristics [J]. CIESC Journal, 2021, 72(5): 2560-2569. |
[2] | JIANG Jing, HOU Jianhua, WANG Shiwei, WANG Xiaofeng, SUN Shuhao, ZHANG Kangkang, LI Qian. Distribution of residual stress in ICM polycarbonate parts with variable curvature [J]. CIESC Journal, 2017, 68(11): 4367-4375. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||