CIESC Journal ›› 2023, Vol. 74 ›› Issue (S1): 132-140.DOI: 10.11949/0438-1157.20221538
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Zhanyu YE(), He SHAN, Zhenyuan XU(
)
Received:
2022-10-30
Revised:
2022-12-02
Online:
2023-09-27
Published:
2023-06-05
Contact:
Zhenyuan XU
通讯作者:
徐震原
作者简介:
叶展羽(1997—),女,硕士研究生,yezhanyu@sjtu.edu.cn
基金资助:
CLC Number:
Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems[J]. CIESC Journal, 2023, 74(S1): 132-140.
叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140.
网格序号 | 网格数/个 | 蒸发速率相对误差/% |
---|---|---|
网格1 | 81801 | 3.062 |
网格2 | 218690 | 1.629 |
网格3 | 328551 | 0.361 |
网格4 | 651513 | 0.278 |
网格5 | 1018205 | — |
Table 1 Grid independence verification
网格序号 | 网格数/个 | 蒸发速率相对误差/% |
---|---|---|
网格1 | 81801 | 3.062 |
网格2 | 218690 | 1.629 |
网格3 | 328551 | 0.361 |
网格4 | 651513 | 0.278 |
网格5 | 1018205 | — |
域 | 名称 | 数值 |
---|---|---|
蒸发面 | 热导率 | 0.43 W·m-1·K-1 |
密度 | 626 kg·m-3 | |
比定压热容 | 4200 J·kg-1·K-1 | |
光吸收率 | 0.97 | |
泡沫 | 热导率 | 0.03 W·m-1·K-1 |
密度 | 200 kg·m-3 | |
比定压热容 | 1300 J·kg-1·K-1 | |
环境 | 环境温度 | 25℃ |
辐照强度 | 1000 kW·m-2 |
Table 2 Physical parameters and environmental parameters
域 | 名称 | 数值 |
---|---|---|
蒸发面 | 热导率 | 0.43 W·m-1·K-1 |
密度 | 626 kg·m-3 | |
比定压热容 | 4200 J·kg-1·K-1 | |
光吸收率 | 0.97 | |
泡沫 | 热导率 | 0.03 W·m-1·K-1 |
密度 | 200 kg·m-3 | |
比定压热容 | 1300 J·kg-1·K-1 | |
环境 | 环境温度 | 25℃ |
辐照强度 | 1000 kW·m-2 |
1 | Vörösmarty C J, Green P, Salisbury J, et al. Global water resources: vulnerability from climate change and population growth[J]. Science, 2000, 289(5477): 284-288. |
2 | Service R F. Desalination freshens up[J]. Science, 2006, 313(5790): 1088-1090. |
3 | Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity[J]. Science Advances, 2016, 2(2): e1500323. |
4 | Xu Z Y, Zhang L N, Zhao L, et al. Ultrahigh-efficiency desalination via a thermally-localized multistage solar still[J]. Energy & Environmental Science, 2020, 13(3): 830-839. |
5 | Jiang B, Zheng J T, Qiu S, et al. Review on electrical discharge plasma technology for wastewater remediation[J]. Chemical Engineering Journal, 2014, 236: 348-368. |
6 | Zhao F, Guo Y H, Zhou X Y, et al. Materials for solar-powered water evaporation[J]. Nature Reviews Materials, 2020, 5(5): 388-401. |
7 | Kabeel A E, EI-Agouz S A. Review of researches and developments on solar stills[J]. Desalination, 2011, 276(1/2/3): 1-12. |
8 | Tao P, Ni G, Song C, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3(12): 1031-1041. |
9 | Ghasemi H, Ni G, Marconnet A M, et al. Solar steam generation by heat localization[J]. Nature Communications, 2014, 5: 4449. |
10 | Tao P, Ni G, Song C Y, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3(12): 1031-1041. |
11 | Ai S, Ma M, Chen Y Z, et al. Metal-ceramic carbide integrated solar-driven evaporation device based on ZrC nanoparticles for water evaporation and desalination[J]. Chemical Engineering Journal, 2022, 429: 132014. |
12 | Li Z T, Wang C B. Multi-scale Ag/CuO photothermal materials: preparation and application in seawater desalination[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(8): 1457-1464. |
13 | Li C C, Zhu B, Liu Z X, et al. Polyelectrolyte-based photothermal hydrogel with low evaporation enthalpy for solar-driven salt-tolerant desalination[J]. Chemical Engineering Journal, 2022, 431: 134224. |
14 | Xu Y Z, Xu J L, Zhang J Y, et al. All-in-one polymer sponge composite 3D evaporators for simultaneous high-flux solar-thermal desalination and electricity generation[J]. Nano Energy, 2022, 93: 106882. |
15 | Ibrahim I, Seo D, McDonagh A, et al. Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment[J]. Desalination, 2020, 500(5): 114853. |
16 | Arunkumar T, Lim H W, Denkenberger D, et al. A review on carbonized natural green flora for solar desalination[J]. Renewable and Sustainable Energy Reviews, 2022, 158: 112121. |
17 | 梁平平, 刘帅, 李红艺, 等. PVDF-CNT自漂浮多孔微珠的制备及在高效太阳能驱动界面水蒸发中的应用[J]. 高等学校化学学报, 2021, 42(8): 2689-2693. |
Liang P P, Liu S, Li H Y, et al. Self-floating porous PVDF-CNT microbeads for highly efficient solar-driven interfacial water evaporation[J]. Chemical Journal of Chinese Universities, 2021, 42(8): 2689-2693. | |
18 | Ma X, Jia X, Yao G, et al. Umbrella evaporator for continuous solar vapor generation and salt harvesting from seawater[J]. Cell Reports Physical Science, 2022, 3(7): 100940. |
19 | Xu Y, Tang C, Ma J, et al. Low-tortuosity water microchannels boosting energy utilization for high water flux solar distillation[J]. Environmental Science & Technology, 2020, 54(8): 5150-5158. |
20 | Wang Y C, Sun X Y, Tao S Y. Rational 3D coiled morphology for efficient solar-driven desalination[J]. Environmental Science & Technology, 2020, 54(24): 16240-16248. |
21 | Li X Q, Lin R X, Ni G, et al. Three-dimensional artificial transpiration for efficient solar waste-water treatment[J]. National Science Review, 2017, 5(1): 70-77. |
22 | Wang Y C, Wang C Z, Song X J, et al. Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones[J]. Journal of Materials Chemistry A, 2018, 6(21): 9874-9881. |
23 | Shi Y, Li R Y, Jin Y, et al. A 3D photothermal structure toward improved energy efficiency in solar steam generation[J]. Joule, 2018, 2(6): 1171-1186. |
24 | Song X Y, Song H C, Wang S, et al. Enhancement of solar vapor generation by a 3D hierarchical heat trapping structure[J]. Journal of Materials Chemistry A, 2019, 7(46): 26496-26503. |
25 | Yang K J, Pan T T, Dang S C, et al. Three-dimensional open architecture enabling salt-rejection solar evaporators with boosted water production efficiency[J]. Nature Communications, 2022, 13(1): 6653. |
26 | Li X Q, Li J L, Lu J Y, et al. Enhancement of interfacial solar vapor generation by environmental energy[J]. Joule, 2018, 2(7): 1331-1338. |
27 | Wang Y D, Wu X, Shao B, et al. Boosting solar steam generation by structure enhanced energy management[J]. Science Bulletin, 2020, 65(16): 1380-1388. |
28 | Li H R, Wang S M, Wang Z X, et al. Synchronously managed water and heat transportation for highly efficient interfacial solar desalination[J]. Desalination, 2022, 538: 115897. |
29 | 闵骞. 道尔顿公式风速函数的改进[J]. 水文, 2005, 25(1): 37-41, 61. |
Min Q. Improvement of wind speed function of Dalton's formula[J]. Hydrology, 2005, 25(1): 37-41, 61. | |
30 | 安美燕, 王洁冰, 徐震原, 等. 基于LiCl溶液太阳能界面蒸发的连续式空气取水[J]. 化工学报, 2021, 72(S1): 70-76. |
An M Y, Wang J B, Xu Z Y, et al. Continuous atmospheric water harvester based on solar interfacial evaporation of LiCl solution[J]. CIESC Journal, 2021, 72(S1): 70-76. |
[1] | Juhui CHEN, Tong SU, Dan LI, Liwei CHEN, Wensheng LYU, Fanqi MENG. Study on the heat transfer characteristics of microchannels under the action of fin-shaped spoilers [J]. CIESC Journal, 2024, 75(9): 3122-3132. |
[2] | Shuyue LI, Huan WANG, Shaoqiang ZHOU, Zhihong MAO, Yongmin ZHANG, Junwu WANG, Xiuhua WU. Numerical simulation of hydrogen reduction of U3O8 in fluidized bed reactors using CPFD method [J]. CIESC Journal, 2024, 75(9): 3133-3151. |
[3] | Shaojun DOU, Liang HAO. Mesoscale simulation of coupled gas charge transfer process in PEMFC catalyst layer [J]. CIESC Journal, 2024, 75(8): 3002-3010. |
[4] | Xiaoyu QIAN, Xuan RUAN, Shuiqing LI. Structural reconstruction and levitation of dielectric particle layers in electric fields [J]. CIESC Journal, 2024, 75(8): 2756-2762. |
[5] | Ziliang ZHU, Shuang WANG, Yu'ang JIANG, Mei LIN, Qiuwang WANG. Solid-liquid phase change algorithm with Euler-Lagrange iteration [J]. CIESC Journal, 2024, 75(8): 2763-2776. |
[6] | Aiming DENG, Yurong HE, Tianqi TANG, Yanwei HU. Simulation of effect of draft plate on particle growth process in spray fluidized beds [J]. CIESC Journal, 2024, 75(8): 2787-2799. |
[7] | Hu JIN, Fan YANG, Mengyao DAI. The motion process of a droplet on a circular cylinder based on the lattice Boltzmann method [J]. CIESC Journal, 2024, 75(8): 2897-2908. |
[8] | Lichang FANG, Zilong LI, Bo CHEN, Zheng SU, Lisi JIA, Zhibin WANG, Ying CHEN. Study on cooling characteristics of chip array based on microencapsulated phase change material slurry [J]. CIESC Journal, 2024, 75(7): 2455-2464. |
[9] | Zhimin HAN, Jiang LI, Zeqi CHEN, Wei LIU, Zhiming XU. Particulate fouling characteristics of different longitudinal vortex generators in pulsating flow channel [J]. CIESC Journal, 2024, 75(7): 2486-2496. |
[10] | Fei LU, Bona LU, Guangwen XU. Analysis of criteria for ideal flow patterns in gas-solid micro fluidized bed reaction analyzer [J]. CIESC Journal, 2024, 75(6): 2201-2213. |
[11] | Bin HUANG, Shengjie FENG, Cheng FU, Wei ZHANG. Numerical study on spreading characteristics of droplet impact on single fiber [J]. CIESC Journal, 2024, 75(6): 2233-2242. |
[12] | Juan LI, Yaowen CAO, Zhangyu ZHU, Lei SHI, Jia LI. Numerical study and structural optimization of microchannel flow and heat transfer characteristics of bionic homocercal fin microchannels [J]. CIESC Journal, 2024, 75(5): 1802-1815. |
[13] | Jing LI, Fangfang ZHANG, Shuaishuai WANG, Jianhua XU, Pengyuan ZHANG. Effect of cavity structure on flammability limit of n-butane partially premixed flame [J]. CIESC Journal, 2024, 75(5): 2081-2090. |
[14] | Lei XIE, Yongsheng XU, Mei LIN. Comparative study on single-phase flow and heat transfer of different cross-section rib-soft tail structures [J]. CIESC Journal, 2024, 75(5): 1787-1801. |
[15] | Wenya WANG, Wei ZHANG, Xiaoling LOU, Ruofei ZHONG, Bingbing CHEN, Junxian YUN. Multi-microtubes formation and simulation of nanocellulose-embedded cryogel microspheres [J]. CIESC Journal, 2024, 75(5): 2060-2071. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 839
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 244
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||