1 |
徐俊芳, 赵耀华, 全贞花, 等. 新型空气-水双热源复合热泵系统除霜特性及能耗[J]. 化工学报, 2018, 69(6): 2646-2654.
|
|
Xu J F, Zhao Y H, Quan Z H, et al. Defrosting characteristics and energy consumption of new air-water dual heat source composite heat pump system[J]. CIESC Journal, 2018, 69(6): 2646-2654.
|
2 |
毛天, 金梓翔, 陈双涛. 架空导线融冰过程分析[J]. 制冷技术, 2015, 35(6): 6-9, 17.
|
|
Mao T, Jin Z X, Chen S T, et al. Analysis of ice-melting process for aerial conductor[J]. Chinese Journal of Refrigeration Technology, 2015, 35(6): 6-9, 17.
|
3 |
张毅, 张冠敏, 冷学礼, 等. 无霜空气源热泵技术研究进展[J]. 化工学报, 2020, 71(12): 5400-5419.
|
|
Zhang Y, Zhang G M, Leng X L, et al. Research progress on frost-free air source heat pump technology[J]. CIESC Journal, 2020, 71(12): 5400-5419.
|
4 |
Zhang L, Song M J, Chao C Y H, et al. An experimental study on the dynamic frosting characteristics on the edge zone of a horizontal copper plate under forced convection[J]. International Journal of Heat and Mass Transfer, 2023, 200: 12354.
|
5 |
Weinert F M, Wuhr M, Bram D. Light driven microflow in ice[J]. Applied Physics of Letters, 2009, 94: 113901.
|
6 |
Li L, Liu Y, Hu H. An experimental study on dynamic ice accretion process over the surfaces of rotating aero-engine spinners[J]. Experimental Thermal and Fluid Science, 2019, 109: 109879.
|
7 |
Cao Y, Tan W, Wu Z. Aircraft icing: an ongoing threat to aviation safety[J]. Aerospace Science and Technology, 2018, 75(4): 353-385.
|
8 |
Song M J, Dang C B, Tomohiro H, et al. Review of experimental data associated with the solidification characteristics of water droplets on a cold plate surface at the early frosting stage[J]. Energy and Buildings, 2020, 223: 110103.
|
9 |
Zhang L, Song M J, Hosseini S, et al. A modeling study of spatial and temporal frost growth on the edge of windward fins for a tube-finned heat exchanger[J]. International Journal of Heat Mass and Transfer, 2022, 183: 122093.
|
10 |
雷尚文, 宋孟杰, 张龙, 等. 自然对流下重力对简单冷表面微观动态结霜特性影响的实验研究[J]. 家电科技, 2022, 5: 71-75.
|
|
Lei S W, Song M J, Zhang L, et al. An experimental study of gravity effect on the micro and dynamic frost characteristics on simple cold plate surfaces under natural convection[J]. Journal of Appliance Science & Technology, 2022, 5: 71-75.
|
11 |
宋立超, 秦妍, 李维仲. 磁场作用下不同润湿性表面结霜实验研究[J]. 化工学报, 2020, 71(12): 5521-5529.
|
|
Song L C, Qin Y, Li W Z. Experimental study of frosting on different wettability surfaces under magnetic field[J]. CIESC Journal, 2020, 71(12): 5521-5529.
|
12 |
Wei P S, Hsiao S Y. Effects of solidification rate on pore shape in solid[J]. International Journal of Thermal Sciences, 2017, 115: 79-88.
|
13 |
Yuan G Y, Ni B Y, Wu Q G, et al. Ice breaking by a high-speed water jet impact[J]. Journal of Fluid Mechanics, 2022, 934: A1.
|
14 |
Inada T, Gatakeyama T, Takemurs F. Gas-storge ice grown from water containing microbubbles[J]. International Journal of Refrigeration, 2009, 32(3): 464-471.
|
15 |
Wei P S, Ho C. An analytical self-consistent determination of a bubble with a deformed cap trapped in solid during solidification[J]. Metallurgical & Materials Transactions B, 2002, 33(1): 91-100.
|
16 |
Chu F Q, Zhang X, Li S K, et al. Bubble formation in freezing droplets[J]. Physical Review Fluids, 2019, 4(7): 071601.
|
17 |
Carte A E. Air bubble in ice[J]. Proceedings of the Physical Society, 1961, 77: 757-768.
|
18 |
Lipp G, Kprber C H, Englich S, et al. Investigation of the behavior of dissolved gases during freezing[J]. Cryobiology, 1987, 24: 489-503.
|
19 |
Wang Y Z, Regel L L, Wilcox W R. Can propagation of gas bubbles lead to detached solidification? Experiments on freezing of water[J]. Crystal and Growth Design, 2002, 2(5): 453-461.
|
20 |
Wei P S, Huang C C, Wang Z P, et al. Growth of bubble/pore size in solid during solidification—an in situ measurement and analysis[J]. Journal of Crystal Growth, 2004, 270: 662-673.
|
21 |
Bari S A, Hallett J. Nucleation and growth of bubbles at an ice-water interface[J]. Journal of Glaciology, 1987, 13(69): 489-520.
|
22 |
Murakami K, Nakajima H. Formation of pores during unidirectional solidification of water containing carbon dioxide[J]. Materials Transactions, 2002, 43(10): 2582-2588.
|
23 |
Dadic R, Light B, Warren S. Migration of air bubbles in ice under a temperature gradient, with application to “Snow Earth”[J]. Journal of Geophysical Research Atmospheres, 2010, 115: D18125.
|
24 |
Yoshimura K, Inada T, Koyama S. Growth of spherical and cylindrical oxygen bubbles at an ice-water interface[J]. Crystal Growth&Design, 2008, 8(7): 2108-2115.
|
25 |
Park J S, Hyun S K, Suzuki S, et al. Effect of transference velocity and hydrogen pressure on porsity and poremorphology of lotus-type porous copper fabricated by a continuous casting technique[J]. Acta Mater, 2007, 55: 5646-5654.
|
26 |
Drenchev L, Sobczak J, Sobczak N, et al. A comprehensive model of ordered porosity formation[J]. Acta Mater, 2007, 55: 6459-6471.
|