CIESC Journal ›› 2023, Vol. 74 ›› Issue (S1): 165-171.DOI: 10.11949/0438-1157.20230172
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Shuangxing ZHANG(), Fangchen LIU, Yifei ZHANG, Wenjing DU(
)
Received:
2023-02-27
Revised:
2023-03-29
Online:
2023-09-27
Published:
2023-06-05
Contact:
Wenjing DU
通讯作者:
杜文静
作者简介:
张双星(2000—),男,硕士研究生,2663928761@qq.com
CLC Number:
Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe[J]. CIESC Journal, 2023, 74(S1): 165-171.
张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171.
设备名称 | 设备参数 |
---|---|
低温恒温槽 | 厂家:LAUDA,型号:WKL1000,精度:±0.5℃ |
无纸记录仪 | 厂家:YOKOGAWA,型号:GX20,精度:±0.1℃ |
交流电源 | 厂家:国电亚光电源有限公司,型号:HYB1760-0.5 KVA,精度:±0.1 A,±0.1V |
电子流量计 | 厂家:上海基深仪器仪表有限公司,型号:M6Y,精度:±0.5 L/h |
T型热电偶 | 测温范围:-200~350℃,精度:±0.5℃ |
Table 1 Detailed parameters of related devices
设备名称 | 设备参数 |
---|---|
低温恒温槽 | 厂家:LAUDA,型号:WKL1000,精度:±0.5℃ |
无纸记录仪 | 厂家:YOKOGAWA,型号:GX20,精度:±0.1℃ |
交流电源 | 厂家:国电亚光电源有限公司,型号:HYB1760-0.5 KVA,精度:±0.1 A,±0.1V |
电子流量计 | 厂家:上海基深仪器仪表有限公司,型号:M6Y,精度:±0.5 L/h |
T型热电偶 | 测温范围:-200~350℃,精度:±0.5℃ |
加热功率/W | 相变时间/min | 功率变化率/% | 相变时间 变化率/% |
---|---|---|---|
100 | 103 | 0 | 0 |
150 | 73 | 50 | 29.1 |
200 | 50.5 | 100 | 51.0 |
Table 2 Influence of heating power on melting time
加热功率/W | 相变时间/min | 功率变化率/% | 相变时间 变化率/% |
---|---|---|---|
100 | 103 | 0 | 0 |
150 | 73 | 50 | 29.1 |
200 | 50.5 | 100 | 51.0 |
1 | 屈健. 脉动热管技术研究及应用进展[J]. 化工进展, 2013, 32(1): 33-41. |
Qu J. Oscillating heat pipes: state of the art and applications[J]. Chemical Industry and Engineering Progress, 2013, 32(1): 33-41. | |
2 | Motahar S, Khodabandeh R. Experimental study on the melting and solidification of a phase change material enhanced by heat pipe[J]. International Communications in Heat and Mass Transfer, 2016, 73: 1-6. |
3 | Robak C W, Bergman T L, Faghri A. Enhancement of latent heat energy storage using embedded heat pipes[J]. International Journal of Heat and Mass Transfer, 2011, 54(15/16): 3476-3484. |
4 | Zhang X, Wu S C, Zhang C B, et al. Dynamic heat transfer characteristics of gravity heat pipe with heat storage[J]. Journal of Energy Storage, 2022, 53: 105134. |
5 | Jung E G, Boo J H. Thermal analytical model of latent thermal storage with heat pipe heat exchanger for concentrated solar power[J]. Solar Energy, 2014, 102: 318-332. |
6 | Amini A, Miller J, Jouhara H. An investigation into the use of the heat pipe technology in thermal energy storage heat exchangers[J]. Energy, 2017, 136: 163-172. |
7 | Ladekar C, Choudhary S K, Khandare S S. Experimental investigation for the optimization of heat pipe performance in latent heat thermal storage[J]. Journal of Mechanical Science and Technology, 2017, 31(6): 2627-2634. |
8 | Akachi H. Structure of a heat pipe: US4921041[P]. 1990-05-01. |
9 | Akachi H. Structure of micro-heat pipe: US5219020[P]. 1993-06-15. |
10 | 周跃国. 脉动热管启动及运行特性的可视化实验研究[D]. 重庆: 重庆大学, 2010. |
Zhou Y G. Visual experiment study on start-up and operating characteristics of pulsating heat pipe[D]. Chongqing: Chongqing University, 2010. | |
11 | 杨蔚原, 张正芳, 马同泽. 脉动热管运行的可视化实验研究[J]. 工程热物理学报, 2001, 22(S1): 117-120. |
Yang W Y, Zhang Z F, Ma T Z. Flow visualization of looped pulsating heat pipe[J]. Journal of Engineering Thermophysics, 2001, 22(S1): 117-120. | |
12 | 曹小林, 席战利, 周晋, 等. 脉动热管运行可视化及传热与流动特性的实验研究[J]. 热能动力工程, 2004, 19(4): 411-415, 441. |
Cao X L, Xi Z L, Zhou J, et al. Experimental investigation of the visualization of pulsating heat-pipe operation as well as heat transfer and flow characteristics[J]. Journal of Engineering for Thermal Energy and Power, 2004, 19(4): 411-415, 441. | |
13 | 冼海珍, 刘登瀛, 杨勇平, 等. 一种用振荡流热管做吸热内管的太阳能真空玻璃集热管: 101021365A[P]. 2008-12-31. |
Liu X H. Solar energy vacuum glass heat accumulating tube utilizing oscillating flow heat tube as heat internal tube: 101021365A[P]. 2008-12-31. | |
14 | 郭良安. 脉动热管的实验研究[D]. 大连: 大连海事大学, 2011. |
Guo L A. Experimental investigation of oscillating heat pipes[D]. Dalian: Dalian Maritime University, 2011. | |
15 | Charoensawan P, Khandekar S, Groll M, et al. Closed loop pulsating heat pipes[J]. Applied Thermal Engineering, 2003, 23(16): 2009-2020. |
16 | Khandekar S, Charoensawan P, Groll M, et al. Closed loop pulsating heat pipes (Part B): Visualization and semi-empirical modeling[J]. Applied Thermal Engineering, 2003, 23(16): 2021-2033. |
17 | Ayel V, Araneo L, Scalambra A, et al. Experimental study of a closed loop flat plate pulsating heat pipe under a varying gravity force[J]. International Journal of Thermal Sciences, 2015, 96: 23-34. |
18 | Mangini D, Mameli M, Georgoulas A, et al. A pulsating heat pipe for space applications: ground and microgravity experiments[J]. International Journal of Thermal Sciences, 2015, 95: 53-63. |
19 | Mameli M, Manno V, Filippeschi S, et al. Thermal instability of a closed loop pulsating heat pipe: combined effect of orientation and filling ratio[J]. Experimental Thermal and Fluid Science, 2014, 59: 222-229. |
20 | Mameli M, Araneo L, Filippeschi S, et al. Thermal response of a closed loop pulsating heat pipe under a varying gravity force[J]. International Journal of Thermal Sciences, 2014, 80: 11-22. |
21 | Iwata N, Ogawa H, Miyazaki Y. Maximum heat transfer and operating temperature of oscillating heat pipe[J]. Journal of Heat Transfer, 2016, 138(12): 122002. |
22 | Zhao J T, Rao Z H, Liu C Z, et al. Experimental investigation on thermal performance of phase change material coupled with closed-loop oscillating heat pipe (PCM/CLOHP) used in thermal management[J]. Applied Thermal Engineering, 2016, 93: 90-100. |
23 | 赵佳腾. 面向储热的脉动热管流动与传热特性及强化机理研究[D]. 徐州: 中国矿业大学, 2018. |
Zhao J T. Characteristics of flow and heat transfer and enhancement mechanism of oscillating heat pipe for thermal energy storage[D]. Xuzhou: China University of Mining and Technology, 2018. | |
24 | Khalilmoghadam P, Rajabi-Ghahnavieh A, Shafii M B. A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe[J]. Renewable Energy, 2021, 163: 2115-2127. |
25 | Zhao J T, Jiang W, Liu C Z, et al. Thermal performance enhancement of an oscillating heat pipe with external expansion structure for thermal energy recovery and storage[J]. Applied Thermal Engineering, 2019, 155: 667-675. |
26 | 罗孝学, 章学来, 邹长贞, 等. 脉动热管相变蓄热器放热性能实验分析[J]. 热力发电, 2018, 47(4): 123-130. |
Luo X X, Zhang X L, Zou C Z, et al. Experimental analysis on heat release performance of pulsating heat pipe phase change heat accumulator[J]. Thermal Power Generation, 2018, 47(4): 123-130. | |
27 | 罗孝学, 章学来, 华维三, 等. 脉动热管相变蓄热器蓄热实验分析[J]. 化工学报, 2017, 68(7): 2722-2729. |
Luo X X, Zhang X L, Hua W S, et al. Experimental analysis on heat storage of pulsating heat pipe phase change heat accumulator[J]. CIESC Journal, 2017, 68(7): 2722-2729. | |
28 | 罗孝学, 章学来, 华维三, 等. 一种脉动热管相变蓄放热试验装置的设计[J]. 流体机械, 2017, 45(4): 63-67. |
Luo X X, Zhang X L, Hua W S, et al. Design of pulsating heat pipe type phase change thermal storage experimental device[J]. Fluid Machinery, 2017, 45(4): 63-67. | |
29 | 罗孝学, 章学来, 华维三, 等. 应用于相变蓄热的脉动热管换热器在不同倾角下放热性能的试验研究[J]. 流体机械, 2017, 45(7): 62-67. |
Luo X X, Zhang X L, Hua W S, et al. Experimental study on heat transfer performance of pulsating heat pipe heat exchanger with phase change heat storage at different inclination[J]. Fluid Machinery, 2017, 45(7): 62-67. | |
30 | Ling Y Z, Zhang X S, Wang F, et al. Performance study of phase change materials coupled with three-dimensional oscillating heat pipes with different structures for electronic cooling[J]. Renewable Energy, 2020, 154: 636-649. |
[1] | Ziliang ZHU, Shuang WANG, Yu'ang JIANG, Mei LIN, Qiuwang WANG. Solid-liquid phase change algorithm with Euler-Lagrange iteration [J]. CIESC Journal, 2024, 75(8): 2763-2776. |
[2] | Jiuzhe QU, Peng YANG, Xufei YANG, Wei ZHANG, Bo YU, Dongliang SUN, Xiaodong WANG. Experimental study on flow boiling in silicon-based microchannels with micropillar cluster arrays [J]. CIESC Journal, 2024, 75(8): 2840-2851. |
[3] | Lichang FANG, Zilong LI, Bo CHEN, Zheng SU, Lisi JIA, Zhibin WANG, Ying CHEN. Study on cooling characteristics of chip array based on microencapsulated phase change material slurry [J]. CIESC Journal, 2024, 75(7): 2455-2464. |
[4] | Qingjie YU, Honghai YANG, Yuhao LIU, Haizhou FANG, Weiqi HE, Jun WANG, Xincheng LU. Wavelet analysis and flow pattern identification in pulsating heat pipes based on temperature signals [J]. CIESC Journal, 2024, 75(7): 2497-2504. |
[5] | Xinze LI, Shuangxing ZHANG, Honghai YANG, Wenjing DU. Experimental study on performance of new type of pulsating heat pipe for battery cooling [J]. CIESC Journal, 2024, 75(6): 2222-2232. |
[6] | Lei XIE, Yongsheng XU, Mei LIN. Comparative study on single-phase flow and heat transfer of different cross-section rib-soft tail structures [J]. CIESC Journal, 2024, 75(5): 1787-1801. |
[7] | Yifei LI, Xinyu DONG, Weishu WANG, Lu LIU, Yifan ZHAO. Numerical study on heat transfer of dry ice sublimation spray cooling on the surface of micro-ribbed plate [J]. CIESC Journal, 2024, 75(5): 1830-1842. |
[8] | Changhui LIU, Tong XIAO, Qingyi LIU, Long GENG, Jiateng ZHAO. Investigation of the thermal storage mechanism of porous TiO2 enhanced phase change materials [J]. CIESC Journal, 2024, 75(2): 706-714. |
[9] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[10] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[11] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[12] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[13] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[14] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[15] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 186
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 328
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||