CIESC Journal ›› 2009, Vol. 60 ›› Issue (9): 2259-2264.
Previous Articles Next Articles
BO Cuimei, QIAO Xu,ZHANG Guangming,ZHANG Shi , YANG Hairong
Online:
Published:
薄翠梅,乔旭,张广明,张湜,杨海荣
Abstract:
An integrated fault diagnosis method based on independent component analysis (ICA) and support vector machines (SVM) is proposed to resolve the problems of the difficulty in fault diagnosis for complex operation and multi-loop controls of chemical industry process.The basic idea of the proposed diagnosis method is to use ICA arithmetic to extract the essential independent components.And, I2,Ie2 and SPE charts are proposed as on-line fault detecting strategy.The contribution chart of every monitoring variable to I2,Ie2 and SPE are calculated separately using the gradient algorithm, and used to extract the preliminary possible fault resource by monitoring the change of contributions.Finally, faults are diagnosed further from possible fault resource using binary tree SVM.The proposed fault diagnosis method is proved to be effective by simulation with the data from a real fault in an industrial butadiene distillation column.
Key words: 独立成分分析, 支持向量机, 梯度算法, 丁二烯精馏装置
独立成分分析,
摘要:
针对由于复杂操作或多回路控制等因素造成复杂化工过程故障诊断难度加剧问题,提出了一种基于独立成分分析(ICA)和支持向量机(SVM)的集成故障诊断方法。该方法利用快速ICA算法建立正常工况ICA模型,通过监控统计量I2、Ie2、SPE是否超过用核密度估计方法确定相应的置信限检测故障。如检测到故障发生,即用梯度算法计算每一个监控变量对统计量I2、Ie2、SPE的贡献度,根据观察贡献度变化情况初步诊断出可能的故障源,并利用支持向量机多分类算法诊断出初始故障源。利用丁二烯精馏装置的实际工业故障数据验证提出的ICA-SVM集成故障诊断方法的有效性。
关键词: 独立成分分析, 支持向量机, 梯度算法, 丁二烯精馏装置
BO Cuimei, QIAO Xu, ZHANG Guangming, ZHANG Shi , YANG Hairong. ICA-SVM based fault diagnosis method for complex chemical process[J]. CIESC Journal, 2009, 60(9): 2259-2264.
薄翠梅, 乔旭, 张广明, 张湜, 杨海荣. 基于ICA-SVM的复杂化工过程集成故障诊断方法 [J]. 化工学报, 2009, 60(9): 2259-2264.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/
https://hgxb.cip.com.cn/EN/Y2009/V60/I9/2259
ZHANG Chunxiao;ZHANG Tao
Oil holdup modeling of oil-water two-phase flow using thermal method based on LSSVM and GA
SUN Bin;DUAN Xiaosong;ZHOU Yunlong
Application of bispectrum KPCA in identification ofgas-liquid two-phase flow regime
Soft sensor modeling based on DE-LSSVM
Fault identification of Tennessee Eastman process based on FS-KPCA
DAI Bo;ZHAO Jing;ZHOU Yan
Ultrasonic in-line inspection of pipeline corrosion based on support vector machine