CIESC Journal ›› 2024, Vol. 75 ›› Issue (S1): 251-258.DOI: 10.11949/0438-1157.20240534
• Biochemical engineering and technology • Previous Articles Next Articles
Shiping SONG(), Xiaoling TANG, Renchao ZHENG(
)
Received:
2024-05-20
Revised:
2024-06-11
Online:
2024-12-17
Published:
2024-12-25
Contact:
Renchao ZHENG
通讯作者:
郑仁朝
作者简介:
宋世萍(1999—),女,硕士研究生,3206757276@qq.com
基金资助:
CLC Number:
Shiping SONG, Xiaoling TANG, Renchao ZHENG. Molecular modification of glutathione bifunctional synthase and its application[J]. CIESC Journal, 2024, 75(S1): 251-258.
宋世萍, 汤晓玲, 郑仁朝. 谷胱甘肽双功能合成酶分子改造及应用[J]. 化工学报, 2024, 75(S1): 251-258.
位点 | 引物序列 |
---|---|
S27MNN | 5´-ACGCAGMNNTTCACGTTCGATACCGAAGTTAGC-3´ |
S27NNK | 5´-CGTGAANNKCTGCGTGTTGACCGTCAGGGTCAG-3´ |
P99MNN | 5´-AGACAGMNNCCACAGAACTTCGTCGGTAGCGAT-3´ |
P99NNK | 5´-CTGTGGNNKCTGTCTATGCCGCCGCGTCTGAAA-3´ |
L136MNN | 5´-AGCCTGMNNTTTGGTACCGTATTTTTCAGCCAG-3´ |
L136NNK | 5´-ACCAAANNKCAGGCTATCTCTGGTATCCACTAC-3´ |
T505MNN | 5´-CAGAGAMNNGAATTCGTCACCAGACGGAACCG-3´ |
T505NNK | 5´-GAATTCNNKTCTCTGGAAGAAGGTCTGGCTTAC-3´ |
G510MNN | 5´-GAAGAAMNNCTGGCTTACTACCCGCTGATCAAA-3´ |
G510NNK | 5´-AGCCAGNNKTTCTTCCAGAGAGGTGAATTCGTC-3´ |
Table 1 Primers for saturation mutation
位点 | 引物序列 |
---|---|
S27MNN | 5´-ACGCAGMNNTTCACGTTCGATACCGAAGTTAGC-3´ |
S27NNK | 5´-CGTGAANNKCTGCGTGTTGACCGTCAGGGTCAG-3´ |
P99MNN | 5´-AGACAGMNNCCACAGAACTTCGTCGGTAGCGAT-3´ |
P99NNK | 5´-CTGTGGNNKCTGTCTATGCCGCCGCGTCTGAAA-3´ |
L136MNN | 5´-AGCCTGMNNTTTGGTACCGTATTTTTCAGCCAG-3´ |
L136NNK | 5´-ACCAAANNKCAGGCTATCTCTGGTATCCACTAC-3´ |
T505MNN | 5´-CAGAGAMNNGAATTCGTCACCAGACGGAACCG-3´ |
T505NNK | 5´-GAATTCNNKTCTCTGGAAGAAGGTCTGGCTTAC-3´ |
G510MNN | 5´-GAAGAAMNNCTGGCTTACTACCCGCTGATCAAA-3´ |
G510NNK | 5´-AGCCAGNNKTTCTTCCAGAGAGGTGAATTCGTC-3´ |
突变体 | 酶活/(U/g wcw) | 相对酶活/% |
---|---|---|
St-GshF | 45.0 | 100 |
St-GshF(S27Q) | 72.0 | 160.0 |
St-GShF(G510P) | 76.2 | 169.3 |
St-GshF(S27Q/G510P) | 78.75 | 175.1 |
Table 2 The relative enzymatic activity of St-GshF and its variants
突变体 | 酶活/(U/g wcw) | 相对酶活/% |
---|---|---|
St-GshF | 45.0 | 100 |
St-GshF(S27Q) | 72.0 | 160.0 |
St-GShF(G510P) | 76.2 | 169.3 |
St-GshF(S27Q/G510P) | 78.75 | 175.1 |
1 | Lushchak V I. Glutathione homeostasis and functions: potential targets for medical interventions[J]. Journal of Amino Acids, 2012, 2012: 736837. |
2 | Kretzschmar M. Regulation of hepatic glutathione metabolism and its role in hepatotoxicity[J]. Experimental and Toxicologic Pathology, 1996, 48(5): 439-446. |
3 | Ishkaeva RA, Nizamov IS, Blokhin DS, et al. Dithiophosphate-induced redox conversions of reduced and oxidized glutathione[J]. Molecules, 2021, 26(10): 2973. |
4 | Jeong E M, Yoon J H, Lim J, et al. Real-time monitoring of glutathione in living cells reveals that high glutathione levels are required to maintain stem cell function[J]. Stem Cell Reports, 2018, 10(2): 600-614. |
5 | Raj Rai S, Bhattacharyya C, Sarkar A, et al. Glutathione: role in oxidative/nitrosative stress, antioxidant defense, and treatments[J]. ChemistrySelect, 2021, 6(18): 4566-4590. |
6 | Bachhawat A K, Yadav S. The glutathione cycle: glutathione metabolism beyond the γ‐glutamyl cycle[J]. IUBMB Life, 2018, 70(7): 585-592. |
7 | Witoo D, Teerapon D, Piyameth D. The clinical effect of glutathione on skin color and other related skin conditions: a systematic review[J]. Journal of Cosmetic Dermatology, 2019, 18(3): 728-737. |
8 | Zhang P P, Li S S, Guo Z F, et al. Nitric oxide regulates glutathione synthesis and cold tolerance in forage legumes[J]. Environmental and Experimental Botany, 2019, 167: 103851. |
9 | Morellato A E, Umansky C, Pontel L B. The toxic side of one-carbon metabolism and epigenetics[J]. Redox Biology, 2021, 40: 101850. |
10 | Wang H L, Zhang J, Li Y P, et al. Potential use of glutathione as a treatment for P a r k i n s o n ' s disease[J]. Experimental and Therapeutic Medicine, 2021, 21(2): 125. |
11 | Gogoi K, Manna P, Dey T, et al. Circulatory heavy metals (cadmium, lead, mercury, and chromium) inversely correlate with plasma GST activity and GSH level in COPD patients and impair NOX4/Nrf2/GCLC/GST signaling pathway in cultured monocytes[J]. Toxicology in Vitro, 2019, 54: 269-279. |
12 | 徐菁苒, 毛健, 刘双平, 等. 高产GSH果酒酵母的筛选及对苹果酒褐变的抑制[J]. 食品与生物技术学报, 2018, 37(5): 455-462. |
Xu J R, Mao J, Liu S P, et al. Study on the screening of high GSH -yielding wine yeast and its effect on wine browning[J]. Journal of Food Science and Biotechnology, 2018, 37(5): 455-462. | |
13 | 任赐, 张方方, 李莹, 等. 富含谷胱甘肽酵母制品在葡萄酒酿造中的应用进展[J]. 食品与发酵工业, 2023: 1-9. |
Ren C, Zhang F F, Li Y, et al. Advances in the application of glutathione-enriched inactive dry yeast derivatives during winemaking[J]. Food and Fermentation Industries, 2023: 1-9. | |
14 | Gotti R, Andrisano V, Cavrini V, et al. Determination of glutathione in pharmaceuticals and cosmetics by HPLC with UV and fluorescence detection[J]. Chromatographia, 1994, 39(1): 23-28. |
15 | Cui X W, Wan J X, Zhang X, et al. Efficient glutathione production in metabolically engineered Escherichia coli strains using constitutive promoters[J]. Journal of Biotechnology, 2019, 289: 39-45. |
16 | Huang C S, Chang L S, Anderson M E, et al. Catalytic and regulatory properties of the heavy subunit of rat kidney gamma-glutamylcysteine synthetase[J]. Journal of Biological Chemistry, 1993, 268(26): 19675-19680. |
17 | Huang C, Yin Z. Highly efficient synthesis of glutathione via a genetic engineering enzymatic method coupled with yeast ATP generation[J]. Catalysts, 2019, 10(1): 33. |
18 | Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes[J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 2013, 1830(5): 3217-3266. |
19 | Richman PG, Meister A. Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione[J]. Journal of Biological Chemistry, 1975, 250(4):1422-1426. |
20 | Griffith O W, Mulcahy R T. The Enzymes of Glutathione Synthesis: γ-Glutamylcysteine Synthetase[M]. Advances in Enzymology and Related Areas of Molecular Biology, 1999: 209-267. |
21 | Janowiak B E, Griffith O W. Glutathione synthesis in Streptococcus agalactiae: one protein accounts for γ-glutamylcysteine synthetase and glutathione synthetase activities[J]. Journal of Biological Chemistry, 2005, 280(12): 11829-11839. |
22 | Yang J, Li W, Wang D, et al. Characterization of bifunctional L-glutathione synthetases from Actinobacillus pleuropneumoniae and Actinobacillus succinogenes for efficient glutathione biosynthesis[J]. Applied microbiology and biotechnology, 2016, 100(14):6279-6289. |
23 | Andexer J N, Richter M. Emerging enzymes for ATP regeneration in biocatalytic processes[J]. Chembiochem: a European Journal of Chemical Biology, 2015, 16(3): 380-386. |
24 | Wang D Z, Wang C, Wu H, et al. Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase[J]. Journal of Microbiology and Biotechnology, 2016, 43(1): 45-53. |
25 | Huang X, Li Y M, Du C, et al. Expression of polyphosphate kinase from Sphingobacterium siyangensis and its application in ATP regeneration system[J]. Chinese Journal of Biotechnology, 2022, 38(12): 4669-4680. |
26 | Cao H, Li C, Zhao J, et al. Enzymatic production of glutathione coupling with an ATP regeneration system based on polyphosphate kinase[J]. Applied Biochemistry and Biotechnology, 2018, 185(2): 385-395. |
27 | Coates T L, Young N, Jarrett A J, et al. Current computational methods for enzyme design[J]. Modern Physics Letters B, 2021, 35(9): 2150155. |
28 | Eberhardt J, Santos-Martins D, Tillack AF, et al. AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings[J]. Journal of Chemical Information and Modeling, 2021, 61(8): 3891-3898. |
29 | Chen R F, Scott C, Trepman E. Fluorescence properties of o-phthaldialdehyde derivatives of amino acids[J]. Biochimica et Biophysica Acta (BBA) - Protein Structure, 1979, 576(2): 440-455. |
30 | Bae W, Yoon T Y, Jeong C. Direct evaluation of self-quenching behavior of fluorophores at high concentrations using an evanescent field[J]. PLoS One, 2021, 16(2): e0247326. |
[1] | Zheming WU, Biyun ZHANG, Renchao ZHENG. Engineering of nitrilase enantioselectivity for efficient synthesis of brivaracetam [J]. CIESC Journal, 2024, 75(7): 2633-2643. |
[2] | Shaojie AN, Hongfeng XU, Si LI, Yuanhang XU, Jiaxi LI. Construction of pH sensitive artificial glutathione peroxidase based on the formation and dissociation of molecular machine [J]. CIESC Journal, 2022, 73(8): 3669-3678. |
[3] | FENG Xudong, LÜ Bo, LI Chun. Advances in enzyme stability modification [J]. CIESC Journal, 2016, 67(1): 277-284. |
[4] | WANG Yulei,WEI Gongyuan,SHAO Na,NIE Min. Strategy for enhanced co-production of S-adenosylmethionine and glutathione by Candida utilis based on energy metabolic analysis [J]. CIESC Journal, 2012, 63(1): 223-229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||