CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2743-2754.DOI: 10.11949/0438-1157.20241287

• Process system engineering • Previous Articles     Next Articles

Wind power hydrogen production systems considering uncertainty: multi-time scale operation strategy

Pengwei LIAO1(), Qinghui LIU2, An PAN2, Jiayue WANG2, Xiaogui FU2, Siyu YANG1(), Hao YU1   

  1. 1.School of Chemistry and Chemical Engineering, South China University of Technology, Guangdong Key Laboratory of Green Chemical Products Technology, Guangzhou 510640, Guangdong, China
    2.SPIC (Jieyang) Qianzhan Power Generation Co. , Ltd. , Jieyang 522000, Guangdong, China
  • Received:2024-11-12 Revised:2024-12-16 Online:2025-07-09 Published:2025-06-25
  • Contact: Siyu YANG

考虑不确定性的风电制氢系统:多时间尺度运行策略

廖鹏伟1(), 刘庆辉2, 潘安2, 王嘉岳2, 符小贵2, 杨思宇1(), 余皓1   

  1. 1.华南理工大学化学与化工学院,广东省绿色化学产品技术重点实验室,广东 广州 510640
    2.国电投(揭阳)前詹发电有限公司,广东 揭阳 522000
  • 通讯作者: 杨思宇
  • 作者简介:廖鹏伟(2000—),男,硕士研究生,202220123569@mail.scut.edu.cn
  • 基金资助:
    国家自然科学基金项目(U22A20415);国家自然科学基金项目(22078106);国家自然科学基金项目(22278151);广东省基础与应用基础研究基金项目(2023A1515012071);贵州省自然科学基金项目(ZK[2022] 028)

Abstract:

With the increasing penetration of renewable energy into the grid, the volatility of wind energy and load uncertainty have an increasingly significant impact on the stable operation of the system. Hydrogen storage emerges as a key technology for achieving renewable energy consumption and mitigating fluctuations. This paper proposes a multi-time scale optimal scheduling strategy considering source-load uncertainty and electrolyzer start-stop characteristics, based on wind power hydrogen production to meet downstream hydrogen load demands. The method integrates a multi-state model of the electrolyzer and state-switching constraints. In the day-ahead scheduling stage, a two-stage robust optimization method is adopted, combined with the hot and cold start-stop characteristics of the electrolyzer, to minimize the day-ahead operating cost and cope with the worst-case scenario. In the intra-day adjustment stage, model predictive control (MPC) is used to dynamically adjust each unit in the system based on real-time wind power data and day-ahead optimization results. To verify the effectiveness of the proposed method, a simulation analysis of the electrolytic hydrogen production system is conducted under typical day scenarios obtained through clustering. The results show that, compared with the traditional scheduling scheme, the proposed method can reduce operating costs by about 5%—6% and significantly reduce the number of start-stop cycles of the electrolyzer, thereby improving system stability.

Key words: wind power hydrogen production, multi-timescale, uncertainty, cold-hot start and stop

摘要:

随着可再生能源在电网中的渗透率不断提高,风能的波动性以及负荷不确定性对系统稳定运行的影响越来越显著。氢储能作为实现可再生能源消纳和平抑波动的关键技术显得尤为重要。基于风电制氢以满足下游氢气负荷,并针对实际运行中电解槽频繁启停的问题,提出了一种考虑源荷不确定性和电解槽启停特性的多时间尺度系统最优调度策略。该方法集成了电解槽多状态模型和状态切换约束。在日前调度阶段,采用两阶段鲁棒优化方法,同时结合电解槽冷热启停特性,以最小化日前运行成本为目标,尝试应对最恶劣情景。在日内调整阶段,基于实时风电数据和日前优化结果,通过模型预测控制(MPC)对系统中的各单元进行动态调整。为了验证所提方法的有效性,在聚类获得的典型日场景下进行了电解制氢系统仿真分析。结果表明,与传统调度方案相比,所提方法可将运行成本降低5%~6%,同时大幅减少电解槽的启停次数,提高系统稳定性。

关键词: 风电制氢, 多时间尺度, 不确定性, 冷热启停

CLC Number: