| [1] |
Chen X, Li X Y, Zhang G L, et al. Application of synthetic biology to the biosynthesis of polyketides[J]. Synthetic Biology and Engineering, 2024, 2(3): 10012.
|
| [2] |
Huang K X, Xia L Q, Zhang Y M, et al. Recent advances in the biochemistry of spinosyns[J]. Applied Microbiology and Biotechnology, 2009, 82(1): 13-23.
|
| [3] |
寿佳丽, 裘娟萍. 新型生物农药——丁烯基多杀菌素[J]. 农药, 2011, 50(4):239-243, 272.
|
|
Shou J L, Qiu J P. A new type of biological pesticide: butenyl-spinosyns[J]. Agrochemicals, 2011, 50(4):239-243, 272.
|
| [4] |
Millar N S, Denholm I. Nicotinic acetylcholine receptors: targets for commercially important insecticides[J]. Invertebrate Neuroscience, 2007, 7(1): 53-66.
|
| [5] |
张逍遥, 郭超, 刘艳丽, 等. 生物农药多杀菌素及其结构类似物的研究进展[J]. 粮油食品科技, 2020, 28(6): 209-217.
|
|
Zhang X Y, Guo C, Liu Y L, et al. Research progress on the biopesticide spinosyns and their analogues [J]. Science and Technology of Cereals, Oils and Foods, 2020, 28(6): 209-217.
|
| [6] |
Wang W S, Li S S, Li Z L, et al. Harnessing the intracellular triacylglycerols for titer improvement of polyketides in Streptomyces [J]. Nature Biotechnology, 2020, 38(1): 76-83.
|
| [7] |
Romero-Rodríguez A, Robledo-Casados I, Sánchez S. An overview on transcriptional regulators in Streptomyces [J]. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2015, 1849(8): 1017-1039.
|
| [8] |
Jiang Y H, Wang K X, Xu L, et al. DipR, a GntR/FadR-family transcriptional repressor: regulatory mechanism and widespread distribution of the dip cluster for dipicolinic acid catabolism in bacteria[J]. Nucleic Acids Research, 2024, 52(18): 10951-10964.
|
| [9] |
Ramos J L, Martínez-Bueno M, Molina-Henares A J, et al. The TetR family of transcriptional repressors[J]. Microbiology and Molecular Biology Reviews, 2005, 69(2): 326-356.
|
| [10] |
Maddocks S E, Oyston P C F. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins[J]. Microbiology, 2008, 154(Pt 12): 3609-3623.
|
| [11] |
Yan Y S, Xia H Y. The roles of SARP family regulators involved in secondary metabolism in Streptomyces [J]. Frontiers in Microbiology, 2024, 15: 1368809.
|
| [12] |
Pei X W, Lei Y Y, Zhang H W. Transcriptional regulators of secondary metabolite biosynthesis in Streptomyces [J]. World Journal of Microbiology & Biotechnology, 2024, 40(5): 156.
|
| [13] |
Rang J, Xia Z Y, Shuai L, et al. A TetR family transcriptional regulator, SP2854 can affect the butenyl-spinosyn biosynthesis by regulating glucose metabolism in Saccharopolyspora pogona [J]. Microbial Cell Factories, 2022, 21(1): 83.
|
| [14] |
Yang Z J, Wei X, He J Q, et al. Characterization of the noncanonical regulatory and transporter genes in atratumycin biosynthesis and production in a heterologous host[J]. Marine Drugs, 2019, 17(10): 560.
|
| [15] |
Li Y, Zhang J H, Zheng J Z, et al. Co-expression of a SARP family activator ChlF2 and a type Ⅱ thioesterase ChlK led to high production of chlorothricin in Streptomyces antibioticus DSM 40725[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 1013.
|
| [16] |
Tang J L, Zhu Z R, He H C, et al. Bacterioferritin: a key iron storage modulator that affects strain growth and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona [J]. Microbial Cell Factories, 2021, 20(1): 157.
|
| [17] |
Hu J J, Xia Z Y, Shuai L, et al. Effect of pII key nitrogen regulatory gene on strain growth and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona [J]. Applied Microbiology and Biotechnology, 2022, 106(8): 3081-3091.
|
| [18] |
Li X Y, Wang J N, Su C, et al. The PurR family transcriptional regulator promotes butenyl-spinosyn production in Saccharopolyspora pogona [J]. Applied Microbiology and Biotechnology, 2025, 109(1): 14.
|
| [19] |
Rang J, He H C, Chen J M, et al. SenX3-RegX3, an important two-component system, regulates strain growth and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona [J]. iScience, 2020, 23(8): 101398.
|
| [20] |
He H C, Yuan S Q, Hu J J, et al. Effect of the TetR family transcriptional regulator Sp1418 on the global metabolic network of Saccharopolyspora pogona [J]. Microbial Cell Factories, 2020, 19(1): 27.
|
| [21] |
Perez-Rueda E, Hernandez-Guerrero R, Martinez-Nuñez M A, et al. Abundance, diversity and domain architecture variability in prokaryotic DNA-binding transcription factors[J]. PLoS One, 2018, 13(4): e0195332.
|
| [22] |
Demeester W, De Paepe B, De Mey M. Fundamentals and exceptions of the LysR-type transcriptional regulators[J]. ACS Synthetic Biology, 2024, 13(10): 3069-3092.
|
| [23] |
Mao X M, Sun Z H, Liang B R, et al. Positive feedback regulation of stgR expression for secondary metabolism in Streptomyces coelicolor [J]. Journal of Bacteriology, 2013, 195(9): 2072-2078.
|
| [24] |
Pan X W, Sun C H, Tang M, et al. LysR-type transcriptional regulator MetR controls prodigiosin production, methionine biosynthesis, cell motility, H2O2 tolerance, heat tolerance, and exopolysaccharide synthesis in Serratia marcescens [J]. Applied and Environmental Microbiology, 2020, 86(4): e02241-19.
|
| [25] |
Shi J, Feng Z Z, Song Q, et al. Structural and functional insights into transcription activation of the essential LysR-type transcriptional regulators[J]. Protein Science, 2024, 33(6): e5012.
|
| [26] |
Song K J, Wei L, Liu J, et al. Engineering of the LysR family transcriptional regulator FkbR1 and its target gene to improve ascomycin production[J]. Applied Microbiology and Biotechnology, 2017, 101(11): 4581-4592.
|
| [27] |
Mu X, Lei R, Yan S Q, et al. The LysR family transcriptional regulator ORF-L16 regulates spinosad biosynthesis in Saccharopolyspora spinosa [J]. Synthetic and Systems Biotechnology, 2024, 9(4): 609-617.
|
| [28] |
何昊城. 丁烯基多杀菌素合成关键调控基因及代谢网络优化研究[D]. 长沙: 湖南师范大学, 2021.
|
|
He H C. Study on key regulatory genes and metabolic network optimization of butene-based spinosad synthesis[D]. Changsha: Hunan Normal University, 2021.
|
| [29] |
Pang J, Li X Y, Guo C, et al. Exploring a high-efficiency genetic transformation system for engineering Saccharopolyspora pogona ASAGF58 to improve butenyl-spinosyn production[J]. ACS Agricultural Science & Technology, 2023, 3(2): 203-210.
|
| [30] |
徐周钦, 郭超, 李金萍, 等. 60Co-NTG复合诱变选育丁烯基多杀菌素高产菌株及其杀虫活性[J]. 中国生物防治学报, 2024, 40(2): 299-309.
|
|
Xu Z Q, Guo C, Li J P, et al. Breeding of butenyl-spinosyns high yielding strain by 60Co-NTG compound mutation and its insecticidal activity[J]. Chinese Journal of Biological Control, 2024, 40(2):299-309.
|
| [31] |
Bustin S A, Benes V, Garson J A, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments[J]. Clinical Chemistry, 2009, 55(4): 611-622.
|
| [32] |
董胜男, 何浩洋, 陈徽, 等. 转录调控因子BldD调控链霉菌形态分化和次级代谢的研究进展[J]. 微生物学通报, 2024, 51(9): 3255-3267.
|
|
Dong S N, He H Y, Chen H, et al. Progress in the regulation of morphological differentiation and secondary metabolism of Streptomyces by the transcriptional regulator BldD[J]. Microbiology China, 2024, 51(9): 3255-3267.
|
| [33] |
You D, Yin B C, Li Z H, et al. Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(24): 6653-6658.
|
| [34] |
Zhang W, Gao H L, Huang Y M, et al. Glutamine synthetase gene glnA plays a vital role in curdlan biosynthesis of Agrobacterium sp. CGMCC 11546[J]. International Journal of Biological Macromolecules, 2020, 165: 222-230.
|
| [35] |
Mistou M Y, Sutcliffe I C, van Sorge N M. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria[J]. FEMS Microbiology Reviews, 2016, 40(4): 464-479.
|