CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6562-6572.DOI: 10.11949/0438-1157.20250779
• Energy and environmental engineering • Previous Articles Next Articles
Xinyu LU(
), Shaolong ZHU, Haoran GAN, Kai WANG(
), Limin QIU, Shiran BAO
Received:2025-07-15
Revised:2025-09-28
Online:2026-01-23
Published:2025-12-31
Contact:
Kai WANG
陆新宇(
), 朱少龙, 甘浩然, 王凯(
), 邱利民, 包士然
通讯作者:
王凯
作者简介:陆新宇(1999—),男,硕士,xinyulu1999@zju.edu.cn
基金资助:CLC Number:
Xinyu LU, Shaolong ZHU, Haoran GAN, Kai WANG, Limin QIU, Shiran BAO. Study on staged precooling heat transfer characteristics of large-diameter liquid hydrogen pipelines[J]. CIESC Journal, 2025, 76(12): 6562-6572.
陆新宇, 朱少龙, 甘浩然, 王凯, 邱利民, 包士然. 大管径液氢输送管线分阶段预冷传热特性研究[J]. 化工学报, 2025, 76(12): 6562-6572.
Add to citation manager EndNote|Ris|BibTeX
| 预冷阶段 | 工质种类 | 工质温度 | 流量 | |
|---|---|---|---|---|
| 气冷阶段 | 阶段一 | 氮气 | 110 K | 196~2457 L/min |
| 阶段二 | 氢气 | 120 K | 3000 L/min | |
| 阶段三 | 氢气 | 50 K | 523~1080 L/min | |
| 液冷阶段 | 阶段四 | 液氢 | 20.3 K | 2.7547 kg/s |
Table 1 Staged chilldown process
| 预冷阶段 | 工质种类 | 工质温度 | 流量 | |
|---|---|---|---|---|
| 气冷阶段 | 阶段一 | 氮气 | 110 K | 196~2457 L/min |
| 阶段二 | 氢气 | 120 K | 3000 L/min | |
| 阶段三 | 氢气 | 50 K | 523~1080 L/min | |
| 液冷阶段 | 阶段四 | 液氢 | 20.3 K | 2.7547 kg/s |
| 几何尺寸与边界条件 | 数值 |
|---|---|
| 管道长度/m | 300 |
| 管道内径/mm | 314 |
| 管道外径/mm | 348 |
| 环境温度/K | 293.15 |
| 管道初始温度/K | 293.15 |
| 管内初始压力/kPa | 100 |
| 管内初始干度 | 1 |
Table 2 Pipeline geometric parameters
| 几何尺寸与边界条件 | 数值 |
|---|---|
| 管道长度/m | 300 |
| 管道内径/mm | 314 |
| 管道外径/mm | 348 |
| 环境温度/K | 293.15 |
| 管道初始温度/K | 293.15 |
| 管内初始压力/kPa | 100 |
| 管内初始干度 | 1 |
| 预冷阶段 | 参数 | 数值 |
|---|---|---|
| 气冷阶段 | 体积流量/(L/min) | 2000~8000 |
| 来流温度/K | 193.15~253.15 | |
| 管线初始温度/K | 295.15 | |
| 管内初始压力/kPa | 100 | |
| 液冷阶段 | 质量流量/(kg/s) | 0.55 |
| 来流温度/K | 115.15 | |
| 管内初始温度 | 气冷阶段最终温度 | |
| 管内初始压力/kPa | 100 |
Table 3 System parameters of liquid unloading process at LNG receiving terminal
| 预冷阶段 | 参数 | 数值 |
|---|---|---|
| 气冷阶段 | 体积流量/(L/min) | 2000~8000 |
| 来流温度/K | 193.15~253.15 | |
| 管线初始温度/K | 295.15 | |
| 管内初始压力/kPa | 100 | |
| 液冷阶段 | 质量流量/(kg/s) | 0.55 |
| 来流温度/K | 115.15 | |
| 管内初始温度 | 气冷阶段最终温度 | |
| 管内初始压力/kPa | 100 |
| [1] | Muhammed N S, Gbadamosi A O, Epelle E I, et al. Hydrogen production, transportation, utilization, and storage: recent advances towards sustainable energy[J]. Journal of Energy Storage, 2023, 73: 109207. |
| [2] | 吴朝玲. 氢气储存和输运[M]. 北京: 化学工业出版社, 2021. |
| Wu Z L. Hydrogen Storage and Transportation [M]. Beijing: Chemical Industry Press, 2021. | |
| [3] | Ikeuba A I, Sonde C U, Charlie D, et al. A review on exploring the potential of liquid hydrogen as a fuel for a sustainable future[J]. Sustainable Chemistry One World, 2024, 3: 100022. |
| [4] | Wallington T J, Woody M, Lewis G M, et al. Green hydrogen pathways, energy efficiencies, and intensities for ground, air, and marine transportation[J]. Joule, 2024, 8(8): 2190-2207. |
| [5] | 全国氢能标准化技术委员会. 液氢贮存和运输技术要求: [S]. 北京: 中国标准出版社, 2021. |
| National Technical Committee for Hydrogen Energy Standardization. Technical requirements for storage and transportation of liquid hydrogen: [S]. Beijing: China Standards Press, 2021. | |
| [6] | Mustafi S. High Reynolds number vertical up-flow parameters for cryogenic two-phase helium I[R]. Digital Repository at the University of Maryland, 2014. |
| [7] | Hartwig J, Styborski J, Stiegemeier B, et al. Liquid hydrogen line chilldown experiments at high Reynolds numbers(Ⅱ): Analysis[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119805. |
| [8] | Hartwig J, Styborski J, McQuillen J, et al. Liquid hydrogen line chilldown experiments at high Reynolds numbers. Optimal chilldown methods[J]. International Journal of Heat and Mass Transfer, 2019, 137: 703-713. |
| [9] | Hartwig J, Chung J N, Dong J, et al. Nitrogen flow boiling and chilldown experiments in microgravity using pulse flow and low-thermally conductive coatings[J]. NPJ Microgravity, 2022, 8: 33. |
| [10] | Hartwig J, Hu H, Styborski J, et al. Comparison of cryogenic flow boiling in liquid nitrogen and liquid hydrogen chilldown experiments[J]. International Journal of Heat and Mass Transfer, 2015, 88: 662-673. |
| [11] | Hu H, Chung J N, Amber S H. An experimental study on flow patterns and heat transfer characteristics during cryogenic chilldown in a vertical pipe[J]. Cryogenics, 2012, 52(4/5/6): 268-277. |
| [12] | Shirai Y, Shiotsu M, Kobayashi H, et al. DNB heat flux in forced flow of subcooled liquid hydrogen under pressures[J]. AIP Conference Proceedings, 2012, 1434(1): 1067-1074. |
| [13] | Shirai Y, Tatsumoto H, Shiotsu M, et al. Forced flow boiling heat transfer of liquid hydrogen for superconductor cooling[J]. Cryogenics, 2011, 51(6): 295-299. |
| [14] | Sakamoto Y, Kobayashi H, Naruo Y, et al. Investigation of boiling hydrogen flow characteristics under low-pressure conditions — flow regime transition characteristics[J]. International Journal of Hydrogen Energy, 2021, 46(11): 8239-8252. |
| [15] | Sakamoto Y, Kobayashi H, Naruo Y, et al. Investigation of boiling hydrogen heat transfer characteristics under low-pressure conditions[J]. Cryogenics, 2023, 131: 103652. |
| [16] | Wang L, Shangguan S, Qu M, et al. Experimental study on cryogenic chilldown performance through a thick-wall tube[J]. Cryogenics, 2022, 122: 103436. |
| [17] | Mercado M, Wong N, Hartwig J, et al. Assessment of two-phase heat transfer coefficient and critical heat flux correlations for cryogenic flow boiling in pipe heating experiments[J]. International Journal of Heat and Mass Transfer, 2019, 133: 295-315. |
| [18] | Darr S R, Hartwig J W. Two-phase convection heat transfer correlations for liquid hydrogen pipe chilldown[J]. Cryogenics, 2020, 105: 102999. |
| [19] | Darr S, Hartwig J, Dong J, et al. Two-phase pipe quenching correlations for liquid nitrogen and liquid hydrogen[J]. American society of mechanical engineers, 2019, 141(4): 042901. |
| [20] | Broughton J, Joshi Y K. Flow boiling in geometrically modified microchannels[J]. Physics of Fluids, 2021, 33(10): 103308. |
| [21] | Chen J, Zeng R, Zhang X, et al. Numerical modeling of flow film boiling in cryogenic chilldown process using the AIAD framework[J]. International Journal of Heat and Mass Transfer, 2018, 124: 269-278. |
| [22] | Chen J Y, Zeng R, Chen H, et al. Effects of wall superheat and mass flux on flow film boiling in cryogenic chilldown process[J]. AIP Advances, 2020, 10: 015123. |
| [23] | 曾锐锐. 低温流体传输管预冷过程的两相流动与传热耦合数值研究[D]. 武汉: 华中科技大学, 2020. |
| Zeng R R. Numerical study on coupled two-phase flow and heat transfer in pre-cooling process of cryogenic fluid transfer pipes[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
| [24] | Kunniyoor K R, Ghosh P. Development of transient flow film boiling heat transfer correlations for energy efficient cryogenic fluid management during feed line quenching operation[J]. International Journal of Heat and Mass Transfer, 2023, 204: 123806. |
| [25] | Kunniyoor K R, Govind R, Venkateswaran K S, et al. Liquid hydrogen pipeline chill-down: mathematical modelling and investigation[J]. Cryogenics, 2021, 118: 103324. |
| [26] | Luchinsky D G, Khasin M, Timucin D, et al. Inferential framework for two-fluid model of cryogenic chilldown[J]. International Journal of Heat and Mass Transfer, 2017, 114: 796-808. |
| [27] | Majumdar A K, Steadman T E, Maroney J L, et al. Numerical modeling of propellant boil-off in a cryogenic storage tank[J]. AIP Conference Proceedings, 2008, 985(1): 1507-1514. |
| [28] | Collier J G, Thome J R. Convective Boiling and Condensation[M]. Oxford Engineering Science Series. Oxford: Clarendon Press, 1996. |
| [29] | Churchill S W. Friction factor equations spans all fluid-flow regimes[J]. Chemical Engineering, 1977, 84: 91-92. |
| [30] | Friedel L. Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow[C]// European Two-phase Group Meeting. Ispra, 1979. |
| [31] | Steiner D, Taborek J. Flow boiling heat transfer in vertical tubes correlated by an asymptotic model[J]. Heat Transfer Engineering, 1992, 13(2): 43-69. |
| [32] | Wang L, Wang J J, Huang X N, et al. Experimental investigation on cryogenic chilldown performance under high-Reynolds number condition and using interior micro-fin structure[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121979. |
| [1] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [2] | Yunlong SUN, Xiaoxiao XU, Yongfang HUANG, Jichao GUO, Weiwei CHEN. Diabatic visualization of CO2 flow boiling in a horizontal smooth tube [J]. CIESC Journal, 2025, 76(S1): 230-236. |
| [3] | Junlong KONG, Yang BI, Yao ZHAO, Yanjun DAI. Simulation experiment on direct cooling thermal management system for energy storage batteries [J]. CIESC Journal, 2025, 76(S1): 289-296. |
| [4] | Jianbin PENG, Ming LI, Junlong XIE, Jianye CHEN. Numerical investigation of liquid hydrogen leakage and explosion overpressure at liquid hydrogen receiving terminal [J]. CIESC Journal, 2025, 76(S1): 453-461. |
| [5] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [6] | Ziteng YAN, Feilong ZHAN, Guoliang DING. Structural design and effect verification of casing-type distributor used in air-conditioners [J]. CIESC Journal, 2025, 76(S1): 152-159. |
| [7] | Jiaqing ZOU, Zhaoyu ZHANG, Jianguo ZHANG, Boyu ZHANG, Dingsheng LIU, Qing MAO, Ting WANG, Jianjun LI. Generation and evolution of bubbles in channels of bipolar plates of alkaline water electrolyzers for producing hydrogen [J]. CIESC Journal, 2025, 76(9): 4786-4799. |
| [8] | Zhiyong JIA, Xiankun SHEN, Xiaocheng LAN, Tiefeng WANG. CFD-DEM simulation of effects of gas density on pressurized fluidization [J]. CIESC Journal, 2025, 76(9): 4383-4397. |
| [9] | Ke LI, Haolin XIE, Jian WEN. Multi-objective genetic algorithm optimization for thermal insulation performance of liquid hydrogen tank with multiple vapor-cooled shields [J]. CIESC Journal, 2025, 76(8): 4217-4227. |
| [10] | Xiaojiang LIANG, Weiwei CHEN, Jianan LUO, Haotian FEI, Xuelei YE, Wenhao LI, Yong NIE. Dispersion characteristics of charged bubbles in an electric dispersion tubular packed bed [J]. CIESC Journal, 2025, 76(8): 3915-3931. |
| [11] | Lu LIU, Ying YANG, Haowen YANG, Tai WANG, Teng WANG, Xinyu DONG, Run YAN. Experimental investigations of condensation droplet shedding characteristics on star-shaped hydrophobic-hydrophilic hybrid surfaces [J]. CIESC Journal, 2025, 76(8): 3905-3914. |
| [12] | Hongbin NIU, Li QIU, Jingxuan YANG, Zhonglin ZHANG, Xiaogang HAO, Zhongkai ZHAO, Abuliti ABUDULA, Guoqing GUAN. Effect of cylinder diameter on cyclone performance and its flow field mechanism [J]. CIESC Journal, 2025, 76(5): 2367-2376. |
| [13] | Yichen ZHANG, Wenbiao ZHANG, Haoyang LI, Xiaoyang NING. Flow measurement of gas-liquid two-phase CO2 using Venturi tube based on dual differential pressure model [J]. CIESC Journal, 2025, 76(4): 1493-1503. |
| [14] | Yiming ZHANG, Peng YANG, Xianbing JI, Jixing REN, Lei ZHANG, Zheng MIAO. Thermal performance of multi-loop flat loop heat pipes [J]. CIESC Journal, 2025, 76(3): 1018-1028. |
| [15] | Panpan WEI, Yinan LIU, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Preparation of aqueous two-phase droplets in improved T-shaped microchannel [J]. CIESC Journal, 2025, 76(2): 576-583. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||