CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5739-5752.DOI: 10.11949/0438-1157.20250465
• Special Column: Multiphase Flow and Heat Transfer in Energy Utilization Processes • Previous Articles
Yuhan LIU1(
), Chuangchuang WANG1, Lin XIAN2, Kai ZHAO1, Daotong CHONG1, Quanbin ZHAO1(
)
Received:2025-04-30
Revised:2025-06-26
Online:2025-12-19
Published:2025-11-25
Contact:
Quanbin ZHAO
刘雨晗1(
), 王创创1, 鲜麟2, 赵凯1, 种道彤1, 赵全斌1(
)
通讯作者:
赵全斌
作者简介:刘雨晗(1998—),女,博士研究生,liu_yuhan@stu.xjtu.edu.cn
基金资助:CLC Number:
Yuhan LIU, Chuangchuang WANG, Lin XIAN, Kai ZHAO, Daotong CHONG, Quanbin ZHAO. Dynamic response characteristics of once-through steam generator secondary side under valve disturbances[J]. CIESC Journal, 2025, 76(11): 5739-5752.
刘雨晗, 王创创, 鲜麟, 赵凯, 种道彤, 赵全斌. 套管式直流蒸汽发生器二次侧阀门扰动下的动态特性研究[J]. 化工学报, 2025, 76(11): 5739-5752.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| 管束数量/根 | 665 | 一次侧冷却剂流量/(kg·s-1) | 126.2 |
| 换热段有效长度/m | 2.15 | 冷却剂入口温度/℃ | 319.5 |
| 外管外径/mm | 13 | 冷却剂出口温度/℃ | 286.5 |
| 外管内径/mm | 10 | 一次侧压力/MPa | 15.0 |
| 内管外径/mm | 8 | 给水流量/(kg·s-1) | 10.3 |
| 内管内径/mm | 6 | 给水温度/℃ | 140.0 |
| 管束排列节距/mm | 13.8 | 蒸汽温度/℃ | 285.0 |
| 总换热功率/MW | 24.1 | 蒸汽压力/MPa | 4.01 |
Table 1 Design parameters of the casing OTSG
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| 管束数量/根 | 665 | 一次侧冷却剂流量/(kg·s-1) | 126.2 |
| 换热段有效长度/m | 2.15 | 冷却剂入口温度/℃ | 319.5 |
| 外管外径/mm | 13 | 冷却剂出口温度/℃ | 286.5 |
| 外管内径/mm | 10 | 一次侧压力/MPa | 15.0 |
| 内管外径/mm | 8 | 给水流量/(kg·s-1) | 10.3 |
| 内管内径/mm | 6 | 给水温度/℃ | 140.0 |
| 管束排列节距/mm | 13.8 | 蒸汽温度/℃ | 285.0 |
| 总换热功率/MW | 24.1 | 蒸汽压力/MPa | 4.01 |
| 区域 | 起始判据 | 传热系数计算关联式 |
|---|---|---|
| 预热区 | — | |
| 过冷沸腾区 | ||
| 饱和沸腾区 | ||
| 缺液区 | ||
| 过热区 |
Table 2 Boundary criterion of flow region and heat transfer coefficient correlation of the secondary side
| 区域 | 起始判据 | 传热系数计算关联式 |
|---|---|---|
| 预热区 | — | |
| 过冷沸腾区 | ||
| 饱和沸腾区 | ||
| 缺液区 | ||
| 过热区 |
| 二回路系统参数 | 设计值 | 计算值 | 误差 |
|---|---|---|---|
| 主汽压/MPa | 4.01 | 4.01 | 0.00% |
| 主汽温/℃ | 288.00 | 288.06 | 0.02% |
| 给水流量/(kg∙s-1) | 165.77 | 166.52 | 0.45% |
| 给水温度/℃ | 139.90 | 138.99 | 0.65% |
| 热功率/MW | 385.30 | 388.12 | 0.73% |
| 汽机功率/MW | 127.52 | 126.64 | 0.69% |
Table 3 Simulation error of the secondary loop thermodynamic system
| 二回路系统参数 | 设计值 | 计算值 | 误差 |
|---|---|---|---|
| 主汽压/MPa | 4.01 | 4.01 | 0.00% |
| 主汽温/℃ | 288.00 | 288.06 | 0.02% |
| 给水流量/(kg∙s-1) | 165.77 | 166.52 | 0.45% |
| 给水温度/℃ | 139.90 | 138.99 | 0.65% |
| 热功率/MW | 385.30 | 388.12 | 0.73% |
| 汽机功率/MW | 127.52 | 126.64 | 0.69% |
| 阀门扰动 | 流量 | 压力 | 温度 |
|---|---|---|---|
| 入口阀+10% | +0.12% | +0.04% | 0 |
| 入口阀+15% | +0.03% | +1.97% | -0.05% |
| 入口阀+20% | +0.04% | +1.42% | -0.07% |
| 入口阀-10% | -0.11% | -0.01% | +0.01% |
| 入口阀-15% | -0.25% | -0.03% | 0 |
| 入口阀-20% | -0.22% | -0.09% | +0.01% |
| 出口阀+10% | +0.80% | +0.59% | +0.03% |
| 出口阀+15% | +0.61% | +0.12% | +0.04% |
| 出口阀+20% | +0.62% | +0.11% | +0.04% |
| 出口阀-10% | -0.84% | -0.53% | -0.10% |
| 出口阀-15% | -5.51% | -4.31% | -0.03% |
| 出口阀-20% | -2.76% | -2.05% | -0.06% |
Table 4 The overshoot of the main steam mass flow rate, pressure and temperature under the inlet valve and outlet valve disturbance by ±10%, ±15% and ±20%
| 阀门扰动 | 流量 | 压力 | 温度 |
|---|---|---|---|
| 入口阀+10% | +0.12% | +0.04% | 0 |
| 入口阀+15% | +0.03% | +1.97% | -0.05% |
| 入口阀+20% | +0.04% | +1.42% | -0.07% |
| 入口阀-10% | -0.11% | -0.01% | +0.01% |
| 入口阀-15% | -0.25% | -0.03% | 0 |
| 入口阀-20% | -0.22% | -0.09% | +0.01% |
| 出口阀+10% | +0.80% | +0.59% | +0.03% |
| 出口阀+15% | +0.61% | +0.12% | +0.04% |
| 出口阀+20% | +0.62% | +0.11% | +0.04% |
| 出口阀-10% | -0.84% | -0.53% | -0.10% |
| 出口阀-15% | -5.51% | -4.31% | -0.03% |
| 出口阀-20% | -2.76% | -2.05% | -0.06% |
| 工况 | 总压降/MPa | 入口给水阀压降/MPa | 入口给水阀压降占比/% | OTSG 压降/MPa | OTSG压降占比/% | 出口主汽阀压降/MPa | 出口主汽阀压降占比/% |
|---|---|---|---|---|---|---|---|
| 初始工况 | 3.27 | 3.04 | 92.86 | 16.65×10-3 | 0.51 | 0.22 | 6.63 |
| 入口阀+10% | 2.95 | 2.71 | 91.96 | 16.46×10-3 | 0.56 | 0.22 | 7.42 |
| 入口阀+15% | 2.87 | 2.62 | 91.39 | 17.29×10-3 | 0.60 | 0.23 | 8.01 |
| 入口阀+20% | 2.75 | 2.51 | 91.13 | 17.17×10-3 | 0.62 | 0.23 | 8.19 |
| 入口阀-10% | 3.69 | 3.46 | 93.92 | 15.71×10-3 | 0.43 | 0.21 | 5.61 |
| 入口阀-15% | 3.94 | 3.73 | 94.64 | 15.75×10-3 | 0.40 | 0.20 | 4.96 |
| 入口阀-20% | 4.22 | 4.02 | 95.27 | 14.72×10-3 | 0.35 | 0.18 | 4.35 |
| 出口阀+10% | 3.24 | 3.10 | 95.69 | 16.43×10-3 | 0.51 | 0.12 | 3.76 |
| 出口阀+15% | 3.22 | 3.11 | 96.38 | 16.82×10-3 | 0.52 | 0.10 | 3.09 |
| 出口阀+20% | 3.22 | 3.12 | 96.85 | 16.53×10-3 | 0.51 | 0.08 | 2.58 |
| 出口阀-10% | 3.41 | 2.90 | 84.87 | 15.52×10-3 | 0.45 | 0.50 | 14.63 |
| 出口阀-15% | 3.56 | 2.73 | 76.68 | 15.41×10-3 | 0.43 | 0.81 | 22.88 |
| 出口阀-20% | 3.81 | 2.42 | 63.48 | 13.68×10-3 | 0.36 | 1.38 | 36.12 |
Table 5 Pressure drop of inlet valve, OTSG, and outlet valve under the ±10%, ±15%, ±20% disturbance of inlet and outlet valves
| 工况 | 总压降/MPa | 入口给水阀压降/MPa | 入口给水阀压降占比/% | OTSG 压降/MPa | OTSG压降占比/% | 出口主汽阀压降/MPa | 出口主汽阀压降占比/% |
|---|---|---|---|---|---|---|---|
| 初始工况 | 3.27 | 3.04 | 92.86 | 16.65×10-3 | 0.51 | 0.22 | 6.63 |
| 入口阀+10% | 2.95 | 2.71 | 91.96 | 16.46×10-3 | 0.56 | 0.22 | 7.42 |
| 入口阀+15% | 2.87 | 2.62 | 91.39 | 17.29×10-3 | 0.60 | 0.23 | 8.01 |
| 入口阀+20% | 2.75 | 2.51 | 91.13 | 17.17×10-3 | 0.62 | 0.23 | 8.19 |
| 入口阀-10% | 3.69 | 3.46 | 93.92 | 15.71×10-3 | 0.43 | 0.21 | 5.61 |
| 入口阀-15% | 3.94 | 3.73 | 94.64 | 15.75×10-3 | 0.40 | 0.20 | 4.96 |
| 入口阀-20% | 4.22 | 4.02 | 95.27 | 14.72×10-3 | 0.35 | 0.18 | 4.35 |
| 出口阀+10% | 3.24 | 3.10 | 95.69 | 16.43×10-3 | 0.51 | 0.12 | 3.76 |
| 出口阀+15% | 3.22 | 3.11 | 96.38 | 16.82×10-3 | 0.52 | 0.10 | 3.09 |
| 出口阀+20% | 3.22 | 3.12 | 96.85 | 16.53×10-3 | 0.51 | 0.08 | 2.58 |
| 出口阀-10% | 3.41 | 2.90 | 84.87 | 15.52×10-3 | 0.45 | 0.50 | 14.63 |
| 出口阀-15% | 3.56 | 2.73 | 76.68 | 15.41×10-3 | 0.43 | 0.81 | 22.88 |
| 出口阀-20% | 3.81 | 2.42 | 63.48 | 13.68×10-3 | 0.36 | 1.38 | 36.12 |
| 阀门开度 | 平均局部换热功率稳态相对变化量 | |||||
|---|---|---|---|---|---|---|
| 入口阀门 | 出口阀门 | |||||
| 单相液 | 两相区 | 单相气 | 单相液 | 两相区 | 单相气 | |
| +10% | +5.45% | -13.72% | — | +0.39% | +1.77% | -2.22% |
| +15% | +8.79% | -17.17% | — | +0.46% | +2.21% | -2.86% |
| +20% | +11.79% | -19.41% | — | +0.54% | +2.47% | -2.95% |
| -10% | -6.32% | +24.23% | -62.26% | -1.16% | -4.81% | +6.49% |
| -15% | -8.03% | +41.77% | -82.32% | -2.41% | -9.87% | +12.51% |
| -20% | -11.49% | +61.83% | -94.64% | -5.69% | -18.64% | +3.03% |
Table 6 Relative difference of average heat load for different flow regions under the ±10%, ±15%, ±20% disturbance of inlet and outlet valves
| 阀门开度 | 平均局部换热功率稳态相对变化量 | |||||
|---|---|---|---|---|---|---|
| 入口阀门 | 出口阀门 | |||||
| 单相液 | 两相区 | 单相气 | 单相液 | 两相区 | 单相气 | |
| +10% | +5.45% | -13.72% | — | +0.39% | +1.77% | -2.22% |
| +15% | +8.79% | -17.17% | — | +0.46% | +2.21% | -2.86% |
| +20% | +11.79% | -19.41% | — | +0.54% | +2.47% | -2.95% |
| -10% | -6.32% | +24.23% | -62.26% | -1.16% | -4.81% | +6.49% |
| -15% | -8.03% | +41.77% | -82.32% | -2.41% | -9.87% | +12.51% |
| -20% | -11.49% | +61.83% | -94.64% | -5.69% | -18.64% | +3.03% |
| [1] | 王鑫, 赵钢, 曲新鹤, 等. 某小型模块化反应堆核电站二回路系统变工况特性[J]. 清华大学学报(自然科学版), 2024, 64(1): 155-163. |
| Wang X, Zhao G, Qu X H, et al. Investigating the off-design performance of the secondary circuit system in a small modular reactor nuclear power plant[J]. Journal of Tsinghua University (Science and Technology), 2024, 64(1): 155-163. | |
| [2] | 孔夏明, 王苇, 孟海波, 等. 直流蒸汽发生器启动系统动态特性仿真[J]. 舰船科学技术, 2013, 35(10): 56-59. |
| Kong X M, Wang W, Meng H B, et al. Simulation study of dynamic characteristic of start-up system for once-through steam generator[J]. Ship Science and Technology, 2013, 35(10): 56-59. | |
| [3] | 朱一虎. 螺旋管式直流蒸汽发生器建模与控制策略研究[D]. 哈尔滨: 哈尔滨工程大学, 2023. |
| Zhu Y H. Modeling and control strategy research of helical tube once-through steam generator[D]. Harbin: Harbin Engineering University, 2023. | |
| [4] | 彭敏俊. 船舶核动力装置[M]. 北京: 原子能出版社, 2009. |
| Peng M J. Ship Nuclear Power Plant[M]. Beijing: Atomic Press, 2009. | |
| [5] | 丁训慎. 核电厂蒸汽发生器设计中的安全问题[J]. 核安全, 2005, 4(2): 1-6, 15. |
| Ding X S. The design safety of steam generators in NPP[J]. Nuclear Safety, 2005, 4(2): 1-6, 15. | |
| [6] | 熊扬恒. 核电站蒸汽发生器研究设计中的几个问题[J]. 核动力工程, 1994, 15(4): 319-322, 333. |
| Xiong Y H. Several problems in the research and design to the steam generator of the nuclear power plant[J]. Nuclear Power Engineering, 1994, 15(4): 319-322, 333. | |
| [7] | 戴饶棋, 段天英, 刘勇, 等. 钠冷快堆直流蒸汽发生器建模与仿真研究[J]. 节能技术, 2023, 41(4): 362-366. |
| Dai R Q, Duan T Y, Liu Y, et al. Study on modeling and simulation of once-through steam generator in sodium-cooled fast reactors[J]. Energy Conservation Technology, 2023, 41(4): 362-366. | |
| [8] | 王寒雨. 套管式直流蒸汽发生器建模与特性分析[D]. 南京: 东南大学, 2022. |
| Wang H Y. Modeling and characteristic analysis of casing once-through steam generator[D]. Nanjing: Southeast University, 2022. | |
| [9] | 王楠. 基于隐式差分格式的直流蒸汽发生器动态性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2022. |
| Wang N. Research on dynamic performance of once through steam generator based on implicit scheme[D]. Harbin: Harbin Engineering University, 2022. | |
| [10] | 许余, 皇甫泽玉, 胥建群, 等. 直流蒸汽发生器动态特性与小破口故障仿真研究[J]. 核动力工程, 2021, 42(2): 161-167. |
| Xu Y, Huangfu Z Y, Xu J Q, et al. Simulation research on dynamic characteristics and small break fault of once-through steam generator[J]. Nuclear Power Engineering, 2021, 42(2): 161-167. | |
| [11] | 许余, 皇甫泽玉, 胥建群, 等. 直流蒸汽发生器建模与仿真研究[J]. 核动力工程, 2021, 42(1): 154-160. |
| Xu Y, Huangfu Z Y, Xu J Q, et al. Research on modeling and simulation of once-through steam generator[J]. Nuclear Power Engineering, 2021, 42(1): 154-160. | |
| [12] | 魏巍. 600 MW钠冷快堆蒸汽发生器仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2019. |
| Wei W. Simulation of 600 MW sodium-cooled fast reactor steam generator[D]. Harbin: Harbin Engineering University, 2019. | |
| [13] | 丁宏达. 考虑流动阻力的直流蒸汽发生器换热性能仿真[D]. 哈尔滨: 哈尔滨工程大学, 2018. |
| Ding H D. Simulation of heat transfer performance of once-through steam generator with flow resistance is considered[D]. Harbin: Harbin Engineering University, 2018. | |
| [14] | 薄琳, 孙宝芝, 干依燃, 等. 一次扰动下直流蒸汽发生器动态换热性能仿真[J]. 化工学报, 2018, 69(S1): 64-71. |
| Bo L, Sun B Z, Gan Y R, et al. Simulation of heat transfer performance of once-through steam generator under primary side disturbance[J]. CIESC Journal, 2018, 69(S1): 64-71. | |
| [15] | 张羽, 孙宝芝, 童铁峰. 运行条件对蒸汽发生器热工参数影响的仿真研究[J]. 原子能科学技术, 2015, 49(12): 2157-2163. |
| Zhang Y, Sun B Z, Tong T F. Simulation research of impact of operating condition on thermal parameters in steam generator[J]. Atomic Energy Science and Technology, 2015, 49(12): 2157-2163. | |
| [16] | Zhang G L, Zhang Y, Yang Y L, et al. Dynamic heat transfer performance study of steam generator based on distributed parameter method[J]. Annals of Nuclear Energy, 2014, 63: 658-664. |
| [17] | Zhu J Y, Guo Y, Zhang Z J. Dynamic simulation of once-through steam generator with concentric annuli tube[J]. Annals of Nuclear Energy, 2012, 50: 185-198. |
| [18] | 朱景艳, 张志俭, 郭赟. 套管式直流蒸汽发生器动态实时仿真研究[J]. 原子能科学技术, 2011, 45(8): 937-940, 942. |
| Zhu J Y, Zhang Z J, Guo Y. Dynamic real-time simulation research on once-through steam generator with concentric annuli tube[J]. Atomic Energy Science and Technology, 2011, 45(8): 937-940, 942. | |
| [19] | 刘建阁, 彭敏俊, 张志俭, 等. 套管式直流蒸汽发生器负荷跟随动态特性分析[J]. 原子能科学技术, 2010, 44(2): 175-182. |
| Liu J G, Peng M J, Zhang Z J, et al. Load following dynamic characteristic analysis of casing once-through steam generator[J]. Atomic Energy Science and Technology, 2010, 44(2): 175-182. | |
| [20] | 李海鹏, 黄晓津, 张良驹. 螺旋管式直流蒸汽发生器的集总参数动态模型[J]. 原子能科学技术, 2008, 42(8): 729-733. |
| Li H P, Huang X J, Zhang L J. Lumped parameter dynamic model of helical coiled once-through steam generator[J]. Atomic Energy Science and Technology, 2008, 42(8): 729-733. | |
| [21] | 黄晓津, 冯元琨, 郭人俊. HTR-10螺旋管式直流蒸汽发生器的动态数学模型[J]. 高技术通讯, 2001, 11(1): 96-99, 93. |
| Huang X J, Feng Y K, Guo R J. Dynamic mathematical model of helical coils of steam generator of HTR-10[J]. High Technology Letters, 2001, 11(1): 96-99, 93. | |
| [22] | 郭海红. 蒸汽发生器工作过程动态仿真[D]. 哈尔滨: 哈尔滨工程大学, 2007. |
| Guo H H. Working process dynamic simulation of steam generator[D]. Harbin: Harbin Engineering University, 2007. | |
| [23] | 张伟, 边信黔, 夏国清. 套管式直流蒸汽发生器动态特性仿真研究[J]. 核科学与工程, 2006, 26(2): 103-107. |
| Zhang W, Bian X Q, Xia G Q. Simulation study of dynamic characteristic of once-through steam generator in annuli tube[J]. Chinese Journal of Nuclear Science and Engineering, 2006, 26(2): 103-107. | |
| [24] | Bai X, Wei Y Z, Zhang R, et al. Operation Scheme analysis of a multipurpose small modular reactor under cogeneration condition based on a once-through steam generator dynamic model[J]. Applied Thermal Engineering, 2024, 257: 124264. |
| [25] | Wan J S, Xie J Y, Wang P F, et al. Control system design for the once-through steam generator of lead-bismuth cooled reactor based on classical control theory[J]. Annals of Nuclear Energy, 2022, 175: 109214. |
| [26] | Li C, Yu R, Yu W M, et al. Pressure control of once-through steam generator using proximal policy optimization algorithm[J]. Annals of Nuclear Energy, 2022, 175: 109232. |
| [27] | Tao M, Ke Z W, Li X L, et al. The research of the model-free adaptive control method of once-through steam generator in nuclear power[C]//2017 25th International Conference on Nuclear Engineering. Shanghai, China, 2017. |
| [28] | 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019. |
| Tao W Q. Heat Transfer[M]. 5th ed. Beijing: Higher Education Press, 2019. | |
| [29] | Bergles A E, Rohsenow W M. The determination of forced-convection surface-boiling heat transfer[J]. Journal of Heat Transfer, 1964, 86(3): 365-372. |
| [30] | Jens W H, Lottes P A. Analysis of heat transfer, burnout, pressure drop and density data for high pressure water[R]. Chicago: Argonne National Laboratory, 1951. |
| [31] | Chen J C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Industrial & Engineering Chemistry Process Design and Development, 1966, 5(3): 322-329. |
| [32] | 吴鸽平, 吴埃敏, 郭贇, 等. 环形窄缝通道内流动沸腾干涸点的研究[J]. 西安交通大学学报, 2004, 38(7): 686-689, 697. |
| Wu G P, Wu A M, Guo Y, et al. Experimental research on dryout point of flow boiling in narrow annular channel[J]. Journal of Xi'an Jiaotong University, 2004, 38(7): 686-689, 697. | |
| [33] | Groeneveld D C, Delorme G G J. Prediction of thermal non-equilibrium in the post-dryout regime[J]. Nuclear Engineering and Design, 1976, 36(1): 17-26. |
| [34] | The Babcock & Wilcox Company. Steam: Its Generation and Use[M]. Akron: The Babcock & Wilcox Company, 2011. |
| [35] | 孔夏明, 王苇, 孟海波, 等. 负荷扰动下直流蒸汽发生器蒸汽压力控制仿真[J]. 舰船科学技术, 2013, 35(2): 68-71. |
| Kong X M, Wang W, Meng H B, et al. Simulation research on pressure control of main steam in once through steam generator load disturbance[J]. Ship Science and Technology, 2013, 35(2): 68-71. | |
| [36] | Li H P, Huang X J, Zhang L J. A lumped parameter dynamic model of the helical coiled once-through steam generator with movable boundaries[J]. Nuclear Engineering and Design, 2008, 238(7): 1657-1663. |
| [37] | 吴青阳, 李根, 刘明, 等. 核能水电联产系统的变负荷动态特性与灵活运行控制策略优化研究[J]. 动力工程学报, 2025, 45(4): 582-591. |
| Wu Q Y, Li G, Liu M, et al. Research on dynamic characteristics and flexible operation control strategy optimization of nuclear power and water cogeneration system[J]. Journal of Chinese Society of Power Engineering, 2025, 45(4): 582-591. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||