CIESC Journal ›› 2025, Vol. 76 ›› Issue (S1): 393-400.DOI: 10.11949/0438-1157.20241197
• Energy and environmental engineering • Previous Articles
Xin XIAO1,2(
), Geng YANG1, Yunfeng WANG2,3
Received:2024-10-26
Revised:2024-10-31
Online:2025-06-26
Published:2025-06-25
Contact:
Xin XIAO
通讯作者:
肖鑫
作者简介:肖鑫(1983—),男,博士,副教授,xin.xiao@dhu.edu.cn
基金资助:CLC Number:
Xin XIAO, Geng YANG, Yunfeng WANG. Simulation of solar heat pump system integration of cascade latent heat thermal energy storage based on TRNSYS[J]. CIESC Journal, 2025, 76(S1): 393-400.
肖鑫, 杨耿, 王云峰. 基于TRNSYS的太阳能梯级蓄热热泵系统模拟[J]. 化工学报, 2025, 76(S1): 393-400.
Add to citation manager EndNote|Ris|BibTeX
| 物性 | SAT1 | SAT2 | SAT3 |
|---|---|---|---|
| 各组分质量比(SAT∶AC∶DHPD∶CMC∶EG) | 100∶7∶1∶1∶7.5 | 100∶13∶1∶1∶7.5 | 100∶19∶1∶1∶7.5 |
| 比热容/(kJ/(kg·K)) | 1.91(固)/2.98(液) | 1.95(固)/2.97(液) | 1.99(固)/2.96(液) |
| 相变潜热/(kJ/kg) | 196.8 | 186.6 | 179.6 |
| 熔点/℃ | 51.4 | 43.9 | 38.9 |
| 相变范围/℃ | 5.4 | 9.4 | 11.7 |
| 理论优化相变温度/℃ | 51.5 | 43.3 | 36.4 |
| 热导率/(W/(m·K)) | 2.096(30℃)/2.310(60℃) | ||
| 密度/(kg/m3) | 1136.4 | ||
Table 1 Thermophysical properties of three SAT-based stereotyped composite PCMs[2]
| 物性 | SAT1 | SAT2 | SAT3 |
|---|---|---|---|
| 各组分质量比(SAT∶AC∶DHPD∶CMC∶EG) | 100∶7∶1∶1∶7.5 | 100∶13∶1∶1∶7.5 | 100∶19∶1∶1∶7.5 |
| 比热容/(kJ/(kg·K)) | 1.91(固)/2.98(液) | 1.95(固)/2.97(液) | 1.99(固)/2.96(液) |
| 相变潜热/(kJ/kg) | 196.8 | 186.6 | 179.6 |
| 熔点/℃ | 51.4 | 43.9 | 38.9 |
| 相变范围/℃ | 5.4 | 9.4 | 11.7 |
| 理论优化相变温度/℃ | 51.5 | 43.3 | 36.4 |
| 热导率/(W/(m·K)) | 2.096(30℃)/2.310(60℃) | ||
| 密度/(kg/m3) | 1136.4 | ||
| 组件 | 子程序 | 参数及其设置条件 |
|---|---|---|
| 平板太阳能集热器 | Type1b | 集热面积:20.0 m2;水流率:200 kg/h;集热器安装角度:45° |
| 缓冲水箱 | Type156 | 罐体积:6 m3;罐高:2 m;罐内水分层节点数:5;热损失速率:3.325 kJ/(m2·K·h) |
| 辅助加热器 | Type138 | 热效率:0.8;设定加热温度:70℃;水流率:200 kg/( m2·h);额定加热功率:1 kW |
| 单级液源热泵 | Type919 | 额定空气测流量:1080 m3/h;额定供热量:10.55 kW, 额定供热功率:3.52 kW;新风占比:33%;额定供热量比例:60%;额定供热功率比例:60% |
| 一体式除湿器 | Type688 | 风机额定功率:93 W;额定流率:400 kg/h |
| 瞬态周期时间表 | Type14h | 10~18 h输出1,其余时间输出0 |
| 水泵 | Type3b | 泵1~3最大流率:400 kg/h;最大功率:16.67 W;功率系数:0.5 |
| 恒温差分控制器 | Type2b | 高温切断温度:100℃;上位温差:10℃;下位温差:4℃ |
| 天气文件读取器 | Type15-6 | 地面反射率:无雪覆盖时期0.2,有雪时0.7 |
| 建筑干燥区域 | Type660 | 总热损失系数:500 kJ/( K·h);室内热容:27.23 kJ/K[ |
Table 2 Calling up components of solar water heat pump drying system and parameter settings
| 组件 | 子程序 | 参数及其设置条件 |
|---|---|---|
| 平板太阳能集热器 | Type1b | 集热面积:20.0 m2;水流率:200 kg/h;集热器安装角度:45° |
| 缓冲水箱 | Type156 | 罐体积:6 m3;罐高:2 m;罐内水分层节点数:5;热损失速率:3.325 kJ/(m2·K·h) |
| 辅助加热器 | Type138 | 热效率:0.8;设定加热温度:70℃;水流率:200 kg/( m2·h);额定加热功率:1 kW |
| 单级液源热泵 | Type919 | 额定空气测流量:1080 m3/h;额定供热量:10.55 kW, 额定供热功率:3.52 kW;新风占比:33%;额定供热量比例:60%;额定供热功率比例:60% |
| 一体式除湿器 | Type688 | 风机额定功率:93 W;额定流率:400 kg/h |
| 瞬态周期时间表 | Type14h | 10~18 h输出1,其余时间输出0 |
| 水泵 | Type3b | 泵1~3最大流率:400 kg/h;最大功率:16.67 W;功率系数:0.5 |
| 恒温差分控制器 | Type2b | 高温切断温度:100℃;上位温差:10℃;下位温差:4℃ |
| 天气文件读取器 | Type15-6 | 地面反射率:无雪覆盖时期0.2,有雪时0.7 |
| 建筑干燥区域 | Type660 | 总热损失系数:500 kJ/( K·h);室内热容:27.23 kJ/K[ |
| 1 | Yao M C, Li M, Wang Y F, et al. Analysis on characteristics and operation mode of direct solar collector coupled heat pump drying system[J]. Renewable Energy, 2023, 206: 223-238. |
| 2 | Zou L G, Liu Y, Yu M Q, et al. A review of solar assisted heat pump technology for drying applications[J]. Energy, 2023, 283: 129215. |
| 3 | IEA. Heating[EB/OL]. (2023.03.20)[2024.10.21] . |
| 4 | IEA. Heat Pumps[EB/OL]. (2023.03.20)[2024.10.21] . |
| 5 | Li J, Zhang Y, Li M, et al. Study on heating performance of solar-assisted heat pump drying system under large temperature difference[J]. Solar Energy, 2021, 229: 148-161. |
| 6 | 李金. 低温工况下太阳能补能与热泵耦合干燥系统性能研究[D]. 昆明: 云南师范大学, 2022. |
| Li J. Study on performance of coupling drying system of solar energy supplement and heat pump at low temperature[D]. Kunming: Yunnan Normal University, 2022. | |
| 7 | Gu H, Chen Y Y, Yao X Y, et al. Review on heat pump (HP) coupled with phase change material (PCM) for thermal energy storage[J]. Chemical Engineering Journal, 2023, 455: 140701. |
| 8 | Zhao C Y, Yan J, Tian X K, et al. Progress in thermal energy storage technologies for achieving carbon neutrality[J]. Carbon Neutrality, 2023, 2(1): 1. |
| 9 | Bellos E, Tzivanidis C, Moschos K, et al. Energetic and financial evaluation of solar assisted heat pump space heating systems[J]. Energy Conversion and Management, 2016, 120: 306-319. |
| 10 | Heinz A, Gritzer F, Thür A. The effect of using a desuperheater in an air-to-water heat pump system supplying a multi-family building[J]. Journal of Building Engineering, 2022, 49: 104002. |
| 11 | 章学来, 林原培, 于树轩, 等. 复合蓄热热泵热水空调技术[J]. 化工学报, 2010, 61(S2): 125-129. |
| Zhang X L, Lin Y P, Yu S X, et al. Hot water air conditioning technology of compound heat storage heat pump[J]. CIESC Journal, 2010, 61(S2): 125-129. | |
| 12 | Zhu C H, Li B G, Yan S B, et al. Experimental research on solar phase change heat storage evaporative heat pump system[J]. Energy Conversion and Management, 2021, 229: 113683. |
| 13 | Hirmiz R, Teamah H M, Lightstone M F, et al. Performance of heat pump integrated phase change material thermal storage for electric load shifting in building demand side management[J]. Energy and Buildings, 2019, 190: 103-118. |
| 14 | Zhang N, Yuan Y P, Cao X L, et al. Latent heat thermal energy storage systems with solid-liquid phase change materials: a review[J]. Advanced Engineering Materials, 2018, 20(6): 1700753. |
| 15 | Wu J H, Feng Y, Liu C P, et al. Heat transfer characteristics of an expanded graphite/paraffin PCM-heat exchanger used in an instantaneous heat pump water heater[J]. Applied Thermal Engineering, 2018, 142: 644-655. |
| 16 | Yang J, Qi G Q, Liu Y, et al. Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage[J]. Carbon, 2016, 100: 693-702. |
| 17 | Mohammed H I. Discharge improvement of a phase change material-air-based thermal energy storage unit for space heating applications using metal foams in the air sides[J]. Heat Transfer, 2022, 51(5): 3830-3852. |
| 18 | Soo X Y D, Tan S Y, Cheong A K H, et al. Electrospun PEO/PEG fibers as potential flexible phase change materials for thermal energy regulation[J]. Exploration, 2023, 4(1): 20230016. |
| 19 | Martin B, Dušan K, Radim R. A numerical analysis of the thermal energy storage based on porous gyroid structure filled with sodium acetate trihydrate[J]. Energies, 2022, 16(1): 309. |
| 20 | Karami R, Kamkari B. Investigation of the effect of inclination angle on the melting enhancement of phase change material in finned latent heat thermal storage units[J]. Applied Thermal Engineering,2019, 146: 45-60. |
| 21 | Cheng X W, Zhai X Q. Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials[J]. Applied Energy, 2018, 215: 566-576. |
| 22 | Elbahjaoui R, El Qarnia H. Numerical study of a shell-and-tube latent thermal energy storage unit heated by laminar pulsed fluid flow[J]. Heat Transfer Engineering, 2017, 38(17): 1466-1480. |
| 23 | 朱子良, 王爽, 姜宇昂, 等. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
| Zhu Z L, Wang S, Jiang Y A, et al. Solid-liquid phase change algorithm with Euler-Lagrange iteration[J]. CIESC Journal, 2024, 75(8): 2763-2776. | |
| 24 | Farid M M, Kanzawa A. Thermal performance of a heat storage module using P C M ' s with different melting temperatures: mathematical modeling[J]. Journal of Solar Energy Engineering, 1989, 111(2): 152-157. |
| 25 | Xu H J, Zhao C Y. Thermal efficiency analysis of the cascaded latent heat/cold storage with multi-stage heat engine model[J]. Renewable Energy, 2016, 86: 228-237. |
| 26 | Gao L, Dong L W, Liu Z Z, et al. Thermal performance analysis and multi-objective optimization of thermal energy storage unit with cascaded packed bed in a solar heating system[J]. Applied Thermal Engineering, 2023, 219: 119416. |
| 27 | Yang G, Xiao X, Wang Y F. Preparation and thermal characterization of composite PCMs with modified melting temperature encapsulated in cascade energy storage device for solar heat pump[J]. Journal of Energy Storage, 2024, 106: 114500. |
| 28 | Thermal Energy System Specialists (TESS). TESSLibs 17-Loads and Structures Library Mathematical Reference[EB/OL]. (2020.02.20)[2024.10.21] . |
| 29 | Thermal Energy System Specialists (TESS). TESSLibs 17-HVAC Library Mathematical Reference[EB/OL]. (2020.02.20)[2024.10.21] . |
| 30 | 杨耿, 肖鑫, 王云峰. 基于㶲优化的梯级潜热储能装置的模拟研究[J]. 储能科学与技术, 2023, 12(12): 3770-3779. |
| Yang G, Xiao X, Wang Y F. Numerical study of a cascade latent heat energy storage system based on exergy optimization[J]. Energy Storage Science and Technology, 2023, 12(12): 3770-3779. | |
| 31 | 邱羽. 二次回热式空气源热泵与太阳能联合干燥系统性能研究[D]. 昆明: 云南师范大学, 2017. |
| Qiu Y. Study on performance of secondary regenerative air source heat pump and solar combined drying system[D]. Kunming: Yunnan Normal University, 2017. |
| [1] | Shuli LIU, Wenhao ZHOU, Shaoliang ZHANG, Yongliang SHEN. Heat release performance of direct absorption/storage solar collector [J]. CIESC Journal, 2025, 76(4): 1722-1730. |
| [2] | Sanlong WANG, Yuelin WANG, Yu CAO. Research on the performance of inorganic perovskite solar cells based on phase heterojunction [J]. CIESC Journal, 2025, 76(3): 1346-1352. |
| [3] | Lingya YUAN, Ying ZHANG. The growth of PV sector in China and its implications for the resource and environmental sustainability [J]. CIESC Journal, 2024, 75(S1): 14-24. |
| [4] | Shihao LI, Zhenhua WU, Zhanfeng ZHAO, Hong WU, Dong YANG, Jiafu SHI, Zhongyi JIANG. Electron transfer, proton transfer and molecule transfer in chemical processes [J]. CIESC Journal, 2024, 75(3): 1052-1064. |
| [5] | Pei WANG, Ruiming DUAN, Guangru ZHANG, Wanqin JIN. Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process [J]. CIESC Journal, 2024, 75(3): 967-973. |
| [6] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
| [7] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
| [8] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
| [9] | Mengqi PENG, Tao ZHANG, Maosheng LI, Zhengrong SHI, Jingyong CAI. Study on preparation and thermoelectric regulation performance of water-ZnO nanofluids for spectral-beam splitting [J]. CIESC Journal, 2023, 74(12): 5027-5037. |
| [10] | Zhewen CHEN, Junjie WEI, Yuming ZHANG, Wei ZHANG, Jiazhou LI. Thermodynamic analysis of CO2 near-zero-emission power system with integrated solar energy, supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(11): 4688-4701. |
| [11] | Feng WANG, Shunxin ZHANG, Fangbo YU, Ya LIU, Liejin GUO. Optimization strategy for producing carbon based fuels by photocatalytic CO2 reduction [J]. CIESC Journal, 2023, 74(1): 29-44. |
| [12] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
| [13] | Xin ZHANG, Rui XU, Xinyu LU, Yong'an NIU. Synthesis and photocatalysis of SiO2@BiOCl-Bi24O31Cl10 core-shell microspheres [J]. CIESC Journal, 2022, 73(8): 3636-3646. |
| [14] | Yu QIAN, Yaoxi CHEN, Xiaofei SHI, Siyu YANG. Big data analysis of solar energy fluctuation characteristics and integration of wind-photovoltaic to hydrogen system [J]. CIESC Journal, 2022, 73(5): 2101-2110. |
| [15] | Rong MA, Jie SUN, Donghui LI, Jinjia WEI. Self-floating high-efficient evaporative catalytic seawater hydrogen production system driven by concentrated solar energy based on Cu/TiO2/C-Wood composite [J]. CIESC Journal, 2022, 73(4): 1695-1703. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||