CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5951-5964.DOI: 10.11949/0438-1157.20250657
• Intelligent process engineering • Previous Articles
Yibai LI1(
), Shichang LIU1, Jing WANG1,2(
), Yongzhong LIU1,2(
)
Received:2025-06-18
Revised:2025-07-21
Online:2025-12-19
Published:2025-11-25
Contact:
Jing WANG, Yongzhong LIU
李一白1(
), 刘世昌1, 王靖1,2(
), 刘永忠1,2(
)
通讯作者:
王靖,刘永忠
作者简介:李一白(2001—),男,硕士研究生,liyibai@stu.xjtu.edu.cn
基金资助:CLC Number:
Yibai LI, Shichang LIU, Jing WANG, Yongzhong LIU. Process simulations and multi-ion coupled transport mechanism for hydrogen-driven electrochemical CO2 capture system[J]. CIESC Journal, 2025, 76(11): 5951-5964.
李一白, 刘世昌, 王靖, 刘永忠. 氢气驱动电化学CO2捕集系统的过程模拟与多离子耦合传输机制[J]. 化工学报, 2025, 76(11): 5951-5964.
Add to citation manager EndNote|Ris|BibTeX
| 几何参数 | 数值 | 操作条件 | 数值 |
|---|---|---|---|
| 200 | 101325 | ||
| 5 | 0.7 | ||
| 40 | 0.2 |
Table 1 The geometrical parameters and operating conditions used in the model
| 几何参数 | 数值 | 操作条件 | 数值 |
|---|---|---|---|
| 200 | 101325 | ||
| 5 | 0.7 | ||
| 40 | 0.2 |
| 参数符号 | 值 | 公式编号 | 文献 |
|---|---|---|---|
| 常数 | |||
| 8.31 | (15)(19)(20)(22)~(26)(29)(30)(33)(34)(36)(37) | ||
| 96485 | (18)(22)(25)(26)(29)(30)(33)~(38) | ||
| 材料物性 | |||
| 1000 | (8) | ||
| 1000 | (12)(13) | ||
| IEC/(mol/kg) | 3 | (8)(13) | |
| 100 | (40) | [ | |
| 0.4 | (47) | ||
| 5 | (47) | ||
| 扩散系数 | |||
| (29) | [ | ||
| 1.35 | (29) | [ | |
| (47) | [ | ||
| 电化学反应 | |||
| 0.5 | (34) | ||
| 0.5 | (34) | ||
| 1 | (35) | ||
| (34) | [ | ||
| 1 | (35) | [ | |
| 化学反应 | |||
| (3) | [ | ||
| (4) | [ | ||
| (5) | [ | ||
| 26 | (5) | [ | |
| 11 | (6) | [ | |
| (6) | [ | ||
| (41) | [ | ||
| 修正因子 | |||
| 5.6 | (43) | ||
| 0.0195 | (44) | ||
| (44) |
Table 2 Additional parameters used in the model
| 参数符号 | 值 | 公式编号 | 文献 |
|---|---|---|---|
| 常数 | |||
| 8.31 | (15)(19)(20)(22)~(26)(29)(30)(33)(34)(36)(37) | ||
| 96485 | (18)(22)(25)(26)(29)(30)(33)~(38) | ||
| 材料物性 | |||
| 1000 | (8) | ||
| 1000 | (12)(13) | ||
| IEC/(mol/kg) | 3 | (8)(13) | |
| 100 | (40) | [ | |
| 0.4 | (47) | ||
| 5 | (47) | ||
| 扩散系数 | |||
| (29) | [ | ||
| 1.35 | (29) | [ | |
| (47) | [ | ||
| 电化学反应 | |||
| 0.5 | (34) | ||
| 0.5 | (34) | ||
| 1 | (35) | ||
| (34) | [ | ||
| 1 | (35) | [ | |
| 化学反应 | |||
| (3) | [ | ||
| (4) | [ | ||
| (5) | [ | ||
| 26 | (5) | [ | |
| 11 | (6) | [ | |
| (6) | [ | ||
| (41) | [ | ||
| 修正因子 | |||
| 5.6 | (43) | ||
| 0.0195 | (44) | ||
| (44) |
Fig.6 Characteristics of electronic efficiency and proportion of current conducted by ions within the membrane electrode under different CO2 capture concentration
| [1] | Muroyama A P, Pătru A, Gubler L. Review: CO2 separation and transport via electrochemical methods[J]. Journal of the Electrochemical Society, 2020, 167(13): 133504. |
| [2] | Rochelle G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654. |
| [3] | Brunetti A, Scura F, Barbieri G, et al. Membrane technologies for CO2 separation[J]. Journal of Membrane Science, 2010, 359(1/2): 115-125. |
| [4] | Leung D Y C, Caramanna G, Maroto-Valer M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443. |
| [5] | Sharifian R, Wagterveld R M, Digdaya I A, et al. Electrochemical carbon dioxide capture to close the carbon cycle[J]. Energy & Environmental Science, 2021, 14(2): 781-814. |
| [6] | Rahimi M, Khurram A, Alan Hatton T, et al. Electrochemical carbon capture processes for mitigation of CO2 emissions[J]. Chemical Society Reviews, 2022, 51(20): 8676-8695. |
| [7] | Cao T N, Snyder S W, Lin Y I, et al. Unraveling the potential of electrochemical pH-swing processes for carbon dioxide capture and utilization[J]. Industrial & Engineering Chemistry Research, 2023, 62(49): 20979-20995. |
| [8] | Jin S J, Wu M, Gordon R G, et al. pH swing cycle for CO2 capture electrochemically driven through proton-coupled electron transfer[J]. Energy & Environmental Science, 2020, 13(10): 3706-3722. |
| [9] | 江南, 刘冰, 唐忠利, 等. 真空变温吸附捕集干烟道气中CO2的模拟研究[J]. 化工学报, 2019, 70(10): 4032-4042. |
| Jiang N, Liu B, Tang Z L, et al. Simulation study on CO2 capture from dry flue gas by temperature vacuum swing adsorption[J]. CIESC Journal, 2019, 70(10): 4032-4042. | |
| [10] | 姚佳逸, 张东辉, 唐忠利, 等. 基于二级双回流的变压吸附捕碳工艺研究[J]. 化工学报, 2025, 76(2): 744-754. |
| Yao J Y, Zhang D H, Tang Z L, et al. Research on carbon capture by pressure swing adsorption based on two-stage dual reflux[J]. CIESC Journal, 2025, 76(2): 744-754. | |
| [11] | Rheinhardt J H, Singh P, Tarakeshwar P, et al. Electrochemical capture and release of carbon dioxide[J]. ACS Energy Letters, 2017, 2(2): 454-461. |
| [12] | Kokoszka B, Jarrah N K, Liu C, et al. Supercapacitive swing adsorption of carbon dioxide[J]. Angewandte Chemie International Edition, 2014, 53(14): 3698-3701. |
| [13] | 赵俊德, 周爱国, 陈彦霖, 等. 吸附法CO2直接空气捕集技术能耗现状[J]. 化工学报, 2025, 76(4): 1375-1390. |
| Zhao J D, Zhou A G, Chen Y L, et al. Current status of energy consumption of adsorption CO2 direct air capture[J]. CIESC Journal, 2025, 76(4): 1375-1390. | |
| [14] | Matz S, Shi L, Zhao Y, et al. Hydrogen-powered electrochemically-driven CO2 removal from air containing 400 to 5000 ppm CO2 [J]. Journal of the Electrochemical Society, 2022, 169(7): 073503. |
| [15] | Sun K G, Tebyetekerwa M, Zhang H X, et al. Electrode, electrolyte, and membrane materials for electrochemical CO2 capture[J]. Advanced Energy Materials, 2024, 14(24): 2400625. |
| [16] | Winnick J, Marshall R D, Schubert F H. An electrochemical device for carbon dioxide concentration ( Ⅰ ) : System design and performance[J]. Industrial & Engineering Chemistry Process Design and Development, 1974, 13(1): 59-63. |
| [17] | Lin C H, Winnick J. An electrochemical device for carbon dioxide concentration ( Ⅱ ) : Steady-state analysis. CO2 transfer[J]. Industrial & Engineering Chemistry Process Design and Development, 1974, 13(1): 63-70. |
| [18] | Matz S, Setzler B P, Weiss C M, et al. Demonstration of electrochemically-driven CO2 separation using hydroxide exchange membranes[J]. Journal of the Electrochemical Society, 2021, 168(1): 014501. |
| [19] | Shi L, Zhao Y, Matz S, et al. A shorted membrane electrochemical cell powered by hydrogen to remove CO2 from the air feed of hydroxide exchange membrane fuel cells[J]. Nature Energy, 2022, 7: 238-247. |
| [20] | 刘世昌, 李一白, 王靖, 等. 氢气驱动电化学捕碳系统的模块化设计与优化[J]. 化工学报, 2025, 76(8): 4108-4118. |
| Liu S C, Li Y B, Wang J, et al. Modular design and optimization of hydrogen-driven electrochemical carbon capture system[J]. CIESC Journal, 2025, 76(8): 4108-4118 | |
| [21] | Rigdon W A, Omasta T J, Lewis C, et al. Carbonate dynamics and opportunities with low temperature, anion exchange membrane-based electrochemical carbon dioxide separators[J]. Journal of Electrochemical Energy Conversion and Storage, 2017, 14(2): 020701. |
| [22] | Chae J E, Choi J, Lee D, et al. Development of anion exchange membrane-based electrochemical CO2 separation cells for direct air capture[J]. Journal of Industrial and Engineering Chemistry, 2025, 145: 543-550. |
| [23] | Siroma Z, Watanabe S, Yasuda K, et al. Mathematical modeling of the concentration profile of carbonate ions in an anion exchange membrane fuel cell[J]. Journal of the Electrochemical Society, 2011, 158(6): B682-B689. |
| [24] | Unlu M, Zhou J F, Kohl P A. Anion exchange membrane fuel cells: experimental comparison of hydroxide and carbonate conductive ions[J]. Electrochemical and Solid-State Letters, 2009, 12(3): B27. |
| [25] | Krewer U, Weinzierl C, Ziv N, et al. Impact of carbonation processes in anion exchange membrane fuel cells[J]. Electrochimica Acta, 2018, 263: 433-446. |
| [26] | Wang X G, Conway W, Burns R, et al. Comprehensive study of the hydration and dehydration reactions of carbon dioxide in aqueous solution[J]. The Journal of Physical Chemistry. A, 2010, 114(4): 1734-1740. |
| [27] | Lees E W, Bui J C, Romiluyi O, et al. Exploring CO2 reduction and crossover in membrane electrode assemblies[J]. Nature Chemical Engineering, 2024, 1: 340-353. |
| [28] | Marshall W L, Franck E U. Ion product of water substance, 0—1000℃, 1—10000 bars New International Formulation and its background[J]. Journal of Physical and Chemical Deference Data, 1981, 10(2): 295-304. |
| [29] | Dekel D R, Rasin I G, Page M, et al. Steady state and transient simulation of anion exchange membrane fuel cells[J]. Journal of Power Sources, 2018, 375: 191-204. |
| [30] | Grew K N, Chiu W K S. A dusty fluid model for predicting hydroxyl anion conductivity in alkaline anion exchange membranes[J]. Journal of the Electrochemical Society, 2010, 157(3): B327. |
| [31] | Zhegur-Khais A, Kubannek F, Krewer U, et al. Measuring the true hydroxide conductivity of anion exchange membranes[J]. Journal of Membrane Science, 2020, 612: 118461. |
| [32] | Mu M Y, Liu W, Xi W J, et al. Numerical investigation of anisotropic gas diffusion layers with graded porosity and wettability in anion exchange membrane fuel cells[J]. International Journal of Heat and Mass Transfer, 2024, 226: 125493. |
| [33] | Poudyal I, Adhikari N P. Temperature dependence of diffusion coefficient of carbon monoxide in water: a molecular dynamics study[J]. Journal of Molecular Liquids, 2014, 194: 77-84. |
| [34] | Cheng C C, Yang Z R, Liu Z, et al. Numerical investigation on the feasibility of metal foam as flow field in alkaline anion exchange membrane fuel cell[J]. Applied Energy, 2021, 302: 117555. |
| [35] | Stefánsson A, Bénézeth P, Schott J. Carbonic acid ionization and the stability of sodium bicarbonate and carbonate ion pairs to 200℃—a potentiometric and spectrophotometric study[J]. Geochimica et Cosmochimica Acta, 2013, 120: 600-611. |
| [36] | Watanabe S, Fukuta K, Yanagi H. Determination of carbonate ion in MEA during the alkaline membrane fuel cell (AMFC) operation[J]. ECS Transactions, 2010, 33(1): 1837-1845. |
| [37] | Moshtarikhah S, Oppers N A W, De Groot M T, et al. Nernst-Planck modeling of multicomponent ion transport in a Nafion membrane at high current density[J]. Journal of Applied Electrochemistry, 2017, 47(1): 51-62. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||