CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 3805-3821.DOI: 10.11949/0438-1157.20250289

• Reviews and monographs • Previous Articles     Next Articles

Machine learning drives system optimization of liquid organic hydrogen storage technology

Xiayu FAN1(), Jianchen SUN1, Keying LI1, Xinya YAO2, Hui SHANG1()   

  1. 1.College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
    2.College of Artificial Intelligence, China University of Petroleum, Beijing 102249, China
  • Received:2025-03-24 Revised:2025-04-06 Online:2025-09-17 Published:2025-08-25
  • Contact: Hui SHANG

机器学习驱动液态有机储氢技术的系统优化

范夏雨1(), 孙建辰1, 李可莹1, 姚馨雅2, 商辉1()   

  1. 1.中国石油大学(北京)化学工程与环境学院,北京 102249
    2.中国石油大学(北京)人工智能学院,北京 102249
  • 通讯作者: 商辉
  • 作者简介:范夏雨(1998—),女,博士研究生,fanxiayu2022@163.com
  • 基金资助:
    碳中和联合研究院自主基金项目(CNIF20240102)

Abstract:

Under the dual challenges of global climate change and energy structure transformation, the development of efficient and clean hydrogen storage and transportation technology has become a key path to achieve the goal of carbon neutrality. Liquid organic hydrogen carriers (LOHCs) technology has become a research hotspot in the field of hydrogen energy storage and transportation due to its high safety and the ability to utilize existing infrastructure. However, the slow dehydrogenation kinetics and strong catalyst dependence limit the industrialization process. In recent years, breakthroughs in machine learning (ML) in new material design, reaction optimization, and data-driven modeling have injected new momentum into LOHCs technology. This paper focuses on the latest research of ML in aspects such as the molecular screening of LOHCs, catalyst design, and reaction condition optimization, points out the current research shortcomings, and prospects the future development directions.

Key words: organic compounds, hydrogen production, machine learning, optimal design, dehydrogenation catalyst

摘要:

在全球气候变化加剧与能源结构转型的双重挑战下,发展高效清洁的氢能储运技术已成为实现碳中和目标的关键路径。液态有机氢载体(LOHCs)储氢技术因其高安全性、可利用现有基础设施等优势成为氢能储运领域的研究热点,但其产业化受制于脱氢动力学缓慢、催化剂依赖性强等问题。近年来机器学习(ML)在新材料设计、反应优化以及数据驱动建模中的突破为LOHCs技术注入了新动能。本文聚焦于ML在LOHCs分子设计与筛选、催化剂设计和反应条件优化等方面的最新研究,提出了目前研究的短板,并展望了未来发展方向。

关键词: 有机化合物, 制氢, 机器学习, 优化设计, 脱氢催化剂

CLC Number: