CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5617-5629.DOI: 10.11949/0438-1157.20250480
• Special Column: Multiphase Flow and Heat Transfer in Energy Utilization Processes • Previous Articles Next Articles
Yufei ZENG1,2(
), Tianqi TANG1,2, Yurong HE1,2(
)
Received:2025-05-06
Revised:2025-07-02
Online:2025-12-19
Published:2025-11-25
Contact:
Yurong HE
通讯作者:
何玉荣
作者简介:曾宇飞(2001—),男,硕士研究生,fjszyf@126.com
基金资助:CLC Number:
Yufei ZENG, Tianqi TANG, Yurong HE. Molecular dynamics simulation of nanobubble evolution characteristics during synthesis of methane-doped hydrogen storage hydrate[J]. CIESC Journal, 2025, 76(11): 5617-5629.
曾宇飞, 唐天琪, 何玉荣. 掺甲烷储氢水合物合成过程纳米气泡演化特性分子动力学模拟研究[J]. 化工学报, 2025, 76(11): 5617-5629.
Add to citation manager EndNote|Ris|BibTeX
| 原子 | 摩尔质量/(g/mol) | 势能参数ε/(kJ/mol) | 势能参数σ/nm | 电荷量q/e |
|---|---|---|---|---|
| H2O | ||||
| O | 16.000 | 0.882 | 0.317 | 0 |
| H | 1.008 | 0 | 0 | 0.590 |
| M(virtual site) | 0 | 0 | 0 | -1.178 |
| CH4 | ||||
| C | 12.011 | 0.276 | 0.035 | -0.240 |
| H | 1.008 | 0.125 | 0.250 | 0.060 |
| H2 | ||||
| H | 1.008 | 0 | 0 | 0.590 |
Table 1 Interaction parameters and atomic charges of simulation systems[26.28-31]
| 原子 | 摩尔质量/(g/mol) | 势能参数ε/(kJ/mol) | 势能参数σ/nm | 电荷量q/e |
|---|---|---|---|---|
| H2O | ||||
| O | 16.000 | 0.882 | 0.317 | 0 |
| H | 1.008 | 0 | 0 | 0.590 |
| M(virtual site) | 0 | 0 | 0 | -1.178 |
| CH4 | ||||
| C | 12.011 | 0.276 | 0.035 | -0.240 |
| H | 1.008 | 0.125 | 0.250 | 0.060 |
| H2 | ||||
| H | 1.008 | 0 | 0 | 0.590 |
| 波峰 | 文献[ | 文献[ | |||
|---|---|---|---|---|---|
| ri /Å | φ/% | ri /Å | φ/% | ||
| 第一波峰 | 2.76 | 2.71 | 1.8 | 2.76 | 0 |
| 第二波峰 | 4.52 | 4.43 | 1.9 | 4.54 | 0.4 |
| 第三波峰 | 6.46 | 6.33 | 2.0 | 6.34 | 1.9 |
Table 2 Comparison of the positions of characteristic wave peaks
| 波峰 | 文献[ | 文献[ | |||
|---|---|---|---|---|---|
| ri /Å | φ/% | ri /Å | φ/% | ||
| 第一波峰 | 2.76 | 2.71 | 1.8 | 2.76 | 0 |
| 第二波峰 | 4.52 | 4.43 | 1.9 | 4.54 | 0.4 |
| 第三波峰 | 6.46 | 6.33 | 2.0 | 6.34 | 1.9 |
| 气体分子 | D0/(103 cm2/s) | D1/(103 cm2/s) | μ1 | D100/(103 cm2/s) | μ100 | D200/(103 cm2/s) | μ200 |
|---|---|---|---|---|---|---|---|
| 氢气 | 1.14 | 1.72 | 0.509 | 2.12 | 0.860 | 1.91 | 0.675 |
| 甲烷 | 0.488 | 1.08 | 1.21 | 1.55 | 2.18 | 1.49 | 2.05 |
Table 3 Diffusion coefficients of hydrogen molecules and methane molecules at characteristic moments
| 气体分子 | D0/(103 cm2/s) | D1/(103 cm2/s) | μ1 | D100/(103 cm2/s) | μ100 | D200/(103 cm2/s) | μ200 |
|---|---|---|---|---|---|---|---|
| 氢气 | 1.14 | 1.72 | 0.509 | 2.12 | 0.860 | 1.91 | 0.675 |
| 甲烷 | 0.488 | 1.08 | 1.21 | 1.55 | 2.18 | 1.49 | 2.05 |
| [1] | 岳子瀚, 龙臻, 周雪冰, 等. sⅡ型水合物储氢研究进展[J]. 化工进展, 2023, 42(10): 5121-5134. |
| Yue Z H, Long Z, Zhou X B, et al. State of the art on hydrogen storage of sⅡ clathrate hydrate[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5121-5134. | |
| [2] | 范以薇, 刘威, 李盈盈, 等. 有机液体储氢中全氢化乙基咔唑催化脱氢研究进展[J]. 化工学报, 2024, 75(4): 1198-1208. |
| Fan Y W, Liu W, Li Y Y, et al. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier[J]. CIESC Journal, 2024, 75(4): 1198-1208. | |
| [3] | Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001, 414(6861): 353-358. |
| [4] | 刘奕扬, 邢志祥, 刘烨铖, 等. 加氢站液氢泄漏扩散特性与安全监测数值模拟研究[J]. 化工学报, 2025, 76(9): 4694-4708. |
| Liu Y Y, Xing Z X, Liu Y C, et al. Numerical simulation study on the leakage diffusion characteristics and safety monitoring of liquid hydrogen in hydrogen refueling stations[J]. CIESC Journal, 2025, 76(9): 4694-4708. | |
| [5] | Epelle E I, Obande W, Udourioh G A, et al. Perspectives and prospects of underground hydrogen storage and natural hydrogen[J]. Sustainable Energy & Fuels, 2022, 6(14): 3324-3343. |
| [6] | Hassanpouryouzband A, Joonaki E, Edlmann K, et al. Offshore geological storage of hydrogen: is this our best option to achieve net-zero?[J]. ACS Energy Letters, 2021, 6(6): 2181-2186. |
| [7] | Andersson J, Grönkvist S. Large-scale storage of hydrogen[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11901-11919. |
| [8] | Milanese C, Jensen T R, Hauback B C, et al. Complex hydrides for energy storage[J]. International Journal of Hydrogen Energy, 2019, 44(15): 7860-7874. |
| [9] | Mao W L, Mao H K. Hydrogen storage in molecular compounds[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(3): 708-710. |
| [10] | Zhang J S, Lee J W. Equilibrium of hydrogen + cyclopentane and carbon dioxide + cyclopentane binary hydrates[J]. Journal of Chemical & Engineering Data, 2009, 54(2): 659-661. |
| [11] | Tsuda T, Ogata K, Hashimoto S, et al. Storage capacity of hydrogen in tetrahydrothiophene and furan clathrate hydrates[J]. Chemical Engineering Science, 2009, 64(19): 4150-4154. |
| [12] | Trueba A T, Radović I R, Zevenbergen J F, et al. Kinetics measurements and in situ Raman spectroscopy of formation of hydrogen-tetrabutylammonium bromide semi-hydrates[J]. International Journal of Hydrogen Energy, 2012, 37(7): 5790-5797. |
| [13] | Jr E D S. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353-363. |
| [14] | Koh C A, Sum A K, Sloan E D. Gas hydrates: unlocking the energy from icy cages[J]. Journal of Applied Physics, 2009, 106(6): 061101. |
| [15] | Wang P F, Li K H, Yang J Y, et al. Experimental and theoretical study on dissociation thermodynamics and kinetics of hydrogen-propane hydrate[J]. Chemical Engineering Journal, 2021, 426: 131279. |
| [16] | Wang P F, Long H, Teng Y, et al. Investigation of hydrogen-propane hydrate formation mechanism and optimal pressure range via hydrate-based hydrogen storage[J]. Fuel, 2024, 361: 130791. |
| [17] | Bao W C, Teng Y, Wang P F, et al. Molecular analysis of hydrogen-propane hydrate formation mechanism and its influencing factors for hydrogen storage[J]. International Journal of Hydrogen Energy, 2024, 50: 697-708. |
| [18] | Zhang Y, Zhao L, Deng S, et al. Effect of nanobubble evolution on hydrate process: a review[J]. Journal of Thermal Science, 2019, 28(5): 948-961. |
| [19] | Fang B, Moultos O A, Lv T, et al. Effects of nanobubbles on methane hydrate dissociation: a molecular simulation study[J]. Fuel, 2023, 345: 128230. |
| [20] | Zhou Z W, Feng J C, Zeng X Y, et al. Revealing the kinetic behaviors of hydrate formation on bubble surface with different pressure gradients in deep-sea methane seepage areas of the South China Sea[J]. Energy, 2024, 308: 132808. |
| [21] | 张炜, 李昊阳, 徐纯刚, 等. 气体水合物生成微观机理及分析方法研究进展[J]. 化工学报, 2022, 73(9): 3815-3827. |
| Zhang W, Li H Y, Xu C G, et al. Research progress on the microscopic mechanism and analytical methods of gas hydrate formation[J]. CIESC Journal, 2022, 73(9): 3815-3827. | |
| [22] | Wang Y H, Yin K D, Fan S S, et al. The molecular insight into the "zeolite-ice" as hydrogen storage material[J]. Energy, 2021, 217: 119406. |
| [23] | Chen S Y, Wang Y H, Fan S S, et al. An innovative nucleation method for high and rapid hydrogen storage based on clathrate hydrates[J]. Journal of Materials Chemistry A, 2024, 12(19): 11424-11438. |
| [24] | 严六明, 朱素华. 分子动力学模拟的理论与实践[M]. 北京: 科学出版社, 2013. |
| Yan L M, Zhu S H. Theory and Practice of Molecular Dynamics Simulation[M]. Beijing: Science Press, 2013. | |
| [25] | Boda D, Henderson D. The effects of deviations from Lorentz-Berthelot rules on the properties of a simple mixture[J]. Molecular Physics, 2008, 106(20): 2367-2370. |
| [26] | Abascal J F, Sanz E, Fernández R G, et al. A potential model for the study of ices and amorphous water: TIP4P/ice[J]. The Journal of Chemical Physics, 2005, 122(23): 234511. |
| [27] | Abraham M J, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers[J]. SoftwareX, 2015, 1: 19-25. |
| [28] | Jorgensen W L, Tirado-Rives J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(19): 6665-6670. |
| [29] | Dodda L S, Vilseck J Z, Tirado-Rives J, et al. 1.14*CM1A-LBCC: localized bond-charge corrected CM1A charges for condensed-phase simulations[J]. The Journal of Physical Chemistry B, 2017, 121(15): 3864-3870. |
| [30] | Dodda L S, Cabeza de Vaca I, Tirado-Rives J, et al. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands[J]. Nucleic Acids Research, 2017, 45(W1): W331-W336. |
| [31] | Wang S Y, Hou K Y, Heinz H. Accurate and compatible force fields for molecular oxygen, nitrogen, and hydrogen to simulate gases, electrolytes, and heterogeneous interfaces[J]. Journal of Chemical Theory and Computation, 2021, 17(8): 5198-5213. |
| [32] | Essmann U, Perera L, Berkowitz M L, et al. A smooth particle mesh Ewald method[J]. The Journal of Chemical Physics, 1995, 103(19): 8577-8593. |
| [33] | Nosé S. A molecular dynamics method for simulations in the canonical ensemble[J]. Molecular Physics, 2002, 100(1): 191-198. |
| [34] | Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method[J]. Journal of Applied Physics, 1981, 52(12): 7182-7190. |
| [35] | Kondori J, Zendehboudi S, James L. New insights into methane hydrate dissociation: utilization of molecular dynamics strategy[J]. Fuel, 2019, 249: 264-276. |
| [36] | 万丽华, 梁德青, 关进安. 烃类水合物导热特性的分子动力学模拟[J]. 化工学报, 2014, 65(3): 792-796. |
| Wan L H, Liang D Q, Guan J A. Characteristic of thermal conduction in hydrocarbon hydrates using molecular dynamics method[J]. CIESC Journal, 2014, 65(3): 792-796. | |
| [37] | Dai C L, Hu Y, Wu Y N, et al. Effects of structural properties of alcohol molecules on decomposition of natural gas hydrates: a molecular dynamics study[J]. Fuel, 2020, 268: 117322. |
| [38] | Wu Y J, He Y R, Tang T Q, et al. Molecular dynamic simulations of methane hydrate formation between solid surfaces: implications for methane storage[J]. Energy, 2023, 262: 125511. |
| [39] | Rodger P M, Forester T R, Smith W. Simulations of the methane hydrate/methane gas interface near hydrate forming conditions conditions[J]. Fluid Phase Equilibria, 1996, 116(1/2): 326-332. |
| [40] | 张少冬, 夏宇, 张志兴, 等. 气体水合物分子动力学模拟研究进展[J]. 低碳化学与化工, 2025, 50(2): 137-147. |
| Zhang S D, Xia Y, Zhang Z X, et al. Research progress on molecular dynamics simulations of gas hydrates[J]. Low-Carbon Chemistry and Chemical Engineering, 2025, 50(2): 137-147. | |
| [41] | 杨海昌, 徐梦迪, 邢耀文, 等. 光滑及粗糙表面纳米气泡成核与生长动力学行为[J]. 物理学报, 2025, 74(2): 024702-1. |
| Yang H C, Xu M D, Xing Y W, et al. Nucleation and growth dynamics of nanobubbles on smooth and rough surfaces[J]. Acta Physica Sinica, 2025, 74(2): 024702-1. | |
| [42] | Makaremi M, Jordan K D, Guthrie G D, et al. Multiphase Monte Carlo and molecular dynamics simulations of water and CO2 intercalation in montmorillonite and beidellite[J]. The Journal of Physical Chemistry C, 2015, 119(27): 15112-15124. |
| [1] | Ting HE, Kai ZHANG, Wensheng LIN, Liqiong CHEN, Jiafu CHEN. Research on integrated process of cryogenic CO2 removal under supercritical pressure and liquefaction for biogas [J]. CIESC Journal, 2025, 76(S1): 418-425. |
| [2] | Jianbin PENG, Ming LI, Junlong XIE, Jianye CHEN. Numerical investigation of liquid hydrogen leakage and explosion overpressure at liquid hydrogen receiving terminal [J]. CIESC Journal, 2025, 76(S1): 453-461. |
| [3] | Hao DING, Lin WANG, Hao LIU. Comparative study on mixing rules of vapor-liquid equilibrium for R290/R245fa [J]. CIESC Journal, 2025, 76(S1): 9-16. |
| [4] | Lu LIU, Wenyue WANG, Teng WANG, Tai WANG, Xinyu DONG, Jiancheng TANG, Shaoheng WANG. Optimization and analysis of hydrogen liquefaction process based on dual mixed refrigerant deep-cooling [J]. CIESC Journal, 2025, 76(9): 4933-4943. |
| [5] | Guoxiang HU, Yikui ZHU, Hua LONG, Xiaowen LIU, Qingang XIONG. Study on the underlying mechanism of choline chloride-lactic acid molar ratio influencing alkali lignin solubility in choline chloride-lactic acid deep eutectic solvents [J]. CIESC Journal, 2025, 76(9): 4449-4461. |
| [6] | Yiyang LIU, Zhixiang XING, Yecheng LIU, Ming PENG, Yuyang LI, Yunhao LI, Ningzhou SHEN. Numerical simulation study on the leakage diffusion characteristics and safety monitoring of liquid hydrogen in hydrogen refueling stations [J]. CIESC Journal, 2025, 76(9): 4694-4708. |
| [7] | Jiaqing ZOU, Zhaoyu ZHANG, Jianguo ZHANG, Boyu ZHANG, Dingsheng LIU, Qing MAO, Ting WANG, Jianjun LI. Generation and evolution of bubbles in channels of bipolar plates of alkaline water electrolyzers for producing hydrogen [J]. CIESC Journal, 2025, 76(9): 4786-4799. |
| [8] | Ning ZENG, Zhenjiang GUO, Jianhua CHEN, Zixuan ZHANG, Yujiao ZENG, Xin XIAO, Songlin LIU, Shaoxiu XUE, Zhiwu ZHOU, Zhenming LU, Limin WANG. Molecular dynamics simulation of water-insoluble phosphorus in dihydrate wet-process phosphoric acid [J]. CIESC Journal, 2025, 76(9): 4539-4550. |
| [9] | Xianghai LI, Delin LAI, Gang KONG, Jian ZHOU. Molecular dynamics simulations on synergistic underwater oleophobicity mechanism of dual-biomimic surfaces [J]. CIESC Journal, 2025, 76(9): 4551-4562. |
| [10] | Bing LIAO, Xinyu ZHU, Qianqian HUANG, Wen XU, Mengyao KOU, Na GUO. Performance and mechanism of enhanced Fenton system by hydroxylamine hydrochloride for removal of 2, 4-DCP under near-neutral conditions [J]. CIESC Journal, 2025, 76(8): 4273-4283. |
| [11] | Shichang LIU, Yibai LI, Jing WANG, Yongzhong LIU. Modular design and optimization of hydrogen-driven electrochemical CO2 capture systems [J]. CIESC Journal, 2025, 76(8): 4108-4118. |
| [12] | Ke LI, Haolin XIE, Jian WEN. Multi-objective genetic algorithm optimization for thermal insulation performance of liquid hydrogen tank with multiple vapor-cooled shields [J]. CIESC Journal, 2025, 76(8): 4217-4227. |
| [13] | Zheng GAO, Hui WANG, Zhiguo QU. Data-driven high-throughput screening of anion-pillared metal-organic frameworks for hydrogen storage [J]. CIESC Journal, 2025, 76(8): 4259-4272. |
| [14] | Yuntao ZHOU, Lifeng CUI, Jie ZHANG, Fuhong YU, Xingang LI, Ye TIAN. Ga2O3 modified CuCeO catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2025, 76(8): 4042-4051. |
| [15] | Jianhai LIU, Lei WANG, Zhaojin LU, Zhishan BAI, Pingyu ZHANG. Research on performance of electrolyzer coupled with electrochemical and multiphase flow model [J]. CIESC Journal, 2025, 76(8): 3885-3893. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||