CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5853-5864.DOI: 10.11949/0438-1157.20250555
• Fluid dynamics and transport phenomena • Previous Articles
Tai WANG1(
), Yitie SUN1,2, Shengrui LI1, Lu LIU1(
), Run YAN1, Teng WANG1, Xinyu DONG1
Received:2025-05-20
Revised:2025-07-20
Online:2025-12-19
Published:2025-11-25
Contact:
Lu LIU
王太1(
), 孙亦铁1,2, 李晟瑞1, 刘璐1(
), 闫润1, 王腾1, 董新宇1
通讯作者:
刘璐
作者简介:王太(1986—),男,博士,高级实验师,wangtai_1986@163.com
基金资助:CLC Number:
Tai WANG, Yitie SUN, Shengrui LI, Lu LIU, Run YAN, Teng WANG, Xinyu DONG. Investigation on the dynamics and vaporization characteristics of droplet impact on the heated wall surface[J]. CIESC Journal, 2025, 76(11): 5853-5864.
王太, 孙亦铁, 李晟瑞, 刘璐, 闫润, 王腾, 董新宇. 液滴撞击热壁面的动力学及汽化特性研究[J]. 化工学报, 2025, 76(11): 5853-5864.
Add to citation manager EndNote|Ris|BibTeX
| d0/mm | H/cm | v/(m/s) | We |
|---|---|---|---|
| 3.15 | 1 | 0.443 | 8.64 |
| 3 | 0.798 | 25.92 | |
| 5 | 0.997 | 43.20 | |
| 7 | 1.172 | 60.47 | |
| 9 | 1.330 | 77.75 | |
| 11 | 1.465 | 95.03 | |
| 13 | 1.596 | 112.31 | |
| 15 | 1.716 | 129.59 |
Table 1 Droplet parameters
| d0/mm | H/cm | v/(m/s) | We |
|---|---|---|---|
| 3.15 | 1 | 0.443 | 8.64 |
| 3 | 0.798 | 25.92 | |
| 5 | 0.997 | 43.20 | |
| 7 | 1.172 | 60.47 | |
| 9 | 1.330 | 77.75 | |
| 11 | 1.465 | 95.03 | |
| 13 | 1.596 | 112.31 | |
| 15 | 1.716 | 129.59 |
| [1] | Xia H X, Kensuke T, Shin T, et al. Droplet morphology analysis of drop-on-demand inkjet printing[J]. China Foundry, 2024, 21(1): 20-28. |
| [2] | Lohse D. Fundamental fluid dynamics challenges in inkjet printing[J]. Annual Review of Fluid Mechanics, 2022, 54: 349-382. |
| [3] | 徐燕青, 李文飞, 吴梦瑶, 等. 用于喷墨印花染料纯化的自组装GO/TiO2复合纳滤膜的制备[J]. 化工学报, 2020, 71(3): 1352-1361. |
| Xu Y Q, Li W F, Wu M Y, et al. Preparation of self-assembled graphene oxide/nano TiO2 composite nanofiltration membrane for inkjet printing dye[J]. CIESC Journal, 2020, 71(3): 1352-1361. | |
| [4] | 孙睿, 王军锋, 许浩洁, 等. 喷雾冷却技术及其强化传热机制研究进展[J]. 化工学报, 2025, 76(4): 1404-1421. |
| Sun R, Wang J F, Xu H J, et al. Research progress on heat transfer enhancement mechanism of spray cooling technology[J]. CIESC Journal, 2025, 76(4): 1404-1421. | |
| [5] | Niu Q, Wang Y, Kang N. The influence of droplet distribution coverage and additives on the heat transfer characteristics of spray cooling under the influence of different parameters[J]. Applied Sciences, 2022, 12(18): 9167. |
| [6] | Riaz Siddiqui F, Tso C Y, Qiu H H, et al. Hybrid nanofluid spray cooling performance and its residue surface effects: toward thermal management of high heat flux devices[J]. Applied Thermal Engineering, 2022, 211: 118454. |
| [7] | Jia D L, Liu Y C, Yi P, et al. Splat formation mechanism of droplet-filled cold-textured groove during plasma spraying[J]. Applied Thermal Engineering, 2020, 173: 115239. |
| [8] | 王瑞琪, 高赞军, 杨华, 等. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219. |
| Wang R Q, Gao Z J, Yang H, et al. Influence of airborne cold source parameters on evaporative cycle system performance[J]. CIESC Journal, 2020, 71(S1): 212-219. | |
| [9] | Tan H. Three-dimensional simulation of micrometer-sized droplet impact and penetration into the powder bed[J]. Chemical Engineering Science, 2016, 153: 93-107. |
| [10] | Thomas T M, Chowdhury I U, Dhivyaraja K, et al. Droplet dynamics on a wettability patterned surface during spray impact[J]. Processes, 2021, 9(3): 555. |
| [11] | Liang G T, Mudawar I. Review of drop impact on heated walls[J]. International Journal of Heat and Mass Transfer, 2017, 106: 103-126. |
| [12] | Bernardin J D, Stebbins C J, Mudawar I. Mapping of impact and heat transfer regimes of water drops impinging on a polished surface[J]. International Journal of Heat and Mass Transfer, 1997, 40(2): 247-267. |
| [13] | Bernardin J D, Stebbins C J, Mudawar I. Effects of surface roughness on water droplet impact history and heat transfer regimes[J]. International Journal of Heat and Mass Transfer, 1996, 40(1): 73-88. |
| [14] | di Marzo M, Evans D D. Evaporation of a water droplet deposited on a hot high thermal conductivity surface[J]. Journal of Heat Transfer, 1989, 111(1): 210-213. |
| [15] | Nakoryakov V E, Misyura S Y, Elistratov S L. The behavior of water droplets on the heated surface[J]. International Journal of Heat and Mass Transfer, 2012, 55(23/24): 6609-6617. |
| [16] | Mao T, Kuhn D C S, Tran H. Spread and rebound of liquid droplets upon impact on flat surfaces[J]. AIChE Journal, 1997, 43(9): 2169-2179. |
| [17] | 陈宏霞, 李林涵, 高翔, 等. 基于气泡动力学分段调控浸润性强化核态沸腾[J]. 化工学报, 2022, 73(4): 1557-1565. |
| Chen H X, Li L H, Gao X, et al. Enhancement of nucleate boiling by temporary modulation of wettability during the bubble dynamic process[J]. CIESC Journal, 2022, 73(4): 1557-1565. | |
| [18] | Xiong T Y, Yuen M C. Evaporation of a liquid droplet on a hot plate[J]. International Journal of Heat and Mass Transfer, 1991, 34(7): 1881-1894. |
| [19] | Okawa T, Nagano K, Hirano T. Boiling heat transfer during single nanofluid drop impacts onto a hot wall[J]. Experimental Thermal and Fluid Science, 2012, 36: 78-85. |
| [20] | Kandlikar S G, Steinke M E. Contact angles and interface behavior during rapid evaporation of liquid on a heated surface[J]. International Journal of Heat and Mass Transfer, 2002, 45(18): 3771-3780. |
| [21] | Qiu L, Dubey S, Choo F H, et al. The transitions of time-independent spreading diameter and splashing angle when a droplet train impinging onto a hot surface[J]. RSC Advances, 2016, 6(17): 13644-13652. |
| [22] | Leidenfrost J G. On the fixation of water in diverse fire[J]. International Journal of Heat and Mass Transfer, 1966, 9(11): 1153-1166. |
| [23] | Rueda Villegas L, Tanguy S, Castanet G, et al. Direct numerical simulation of the impact of a droplet onto a hot surface above the Leidenfrost temperature[J]. International Journal of Heat and Mass Transfer, 2017, 104: 1090-1109. |
| [24] | Gottfried B S, Lee C J, Bell K J. The Leidenfrost phenomenon: film boiling of liquid droplets on a flat plate[J]. International Journal of Heat and Mass Transfer, 1966, 9(11): 1167-1188. |
| [25] | Tran T, Staat H J J, Prosperetti A, et al. Drop impact on superheated surfaces[J]. Physical Review Letters, 2012, 108(3): 036101. |
| [26] | Manzello S L, Yang J C. An experimental study of high Weber number impact of methoxy-nonafluorobutane C4F9OCH3 (HFE-7100) and n-heptane droplets on a heated solid surface[J]. International Journal of Heat and Mass Transfer, 2002, 45(19): 3961-3971. |
| [27] | Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. |
| [28] | Hoffman R L. A study of the advancing interface (Ⅰ): Interface shape in liquid-gas systems[J]. Journal of Colloid and Interface Science, 1975, 50(2): 228-241. |
| [29] | Lee W H. A Pressure Iteration Scheme for Two-phase Flow Modeling[M]. Washington, DC:Hemisphere Publishing,1980. |
| [30] | Yang K H, Jin K D, Xiong J W, et al. Interfacial heat transfer and boiling transition of the droplets on superheated surface with Leidenfrost effects[J]. International Journal of Heat and Mass Transfer, 2023, 212: 124297. |
| [31] | Singha S K, Das P K, Maiti B. Thermodynamic formulation of the barrier for heterogeneous pinned nucleation: implication to the crossover scenarios associated with barrierless and homogeneous nucleation[J]. The Journal of Chemical Physics, 2017, 146(23): 234702. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||