CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5806-5815.DOI: 10.11949/0438-1157.20250472
• Special Column: Multiphase Flow and Heat Transfer in Energy Utilization Processes • Previous Articles Next Articles
Shuang CAO1,2(
), He LIU1, Jiaju GUO1, Yi ZHANG1, Wenpei LIU1, Xuehong WU1,2(
)
Received:2025-04-30
Revised:2025-09-19
Online:2025-12-19
Published:2025-11-25
Contact:
Xuehong WU
曹泷1,2(
), 刘贺1, 郭家驹1, 张义1, 刘文裴1, 吴学红1,2(
)
通讯作者:
吴学红
作者简介:曹泷(1989—),男,博士,副教授,caos@zzuli.edu.cn
基金资助:CLC Number:
Shuang CAO, He LIU, Jiaju GUO, Yi ZHANG, Wenpei LIU, Xuehong WU. R245fa flow boiling heat transfer characteristics in horizontal tube with segmented porous coating[J]. CIESC Journal, 2025, 76(11): 5806-5815.
曹泷, 刘贺, 郭家驹, 张义, 刘文裴, 吴学红. 水平管内分段式多孔镀层R245fa沸腾换热特性[J]. 化工学报, 2025, 76(11): 5806-5815.
Add to citation manager EndNote|Ris|BibTeX
| 测量参数 | 选用仪表 | 量程 | 精度 |
|---|---|---|---|
| 预热段进口压力 | 罗斯蒙特压力变送器 | 0~1 MPa | ±0.1% |
| 实验段进、出口压力 | 罗斯蒙特压力变送器 | 0~1 MPa | ±0.1% |
| 流体温度 | Omega-K型铠装热电偶 | 0~800℃ | ±0.5℃ |
| 壁面温度 | Omega-K型线状热电偶 | 0~260℃ | ±0.5℃ |
Table 1 Measurement parameters and instrument type
| 测量参数 | 选用仪表 | 量程 | 精度 |
|---|---|---|---|
| 预热段进口压力 | 罗斯蒙特压力变送器 | 0~1 MPa | ±0.1% |
| 实验段进、出口压力 | 罗斯蒙特压力变送器 | 0~1 MPa | ±0.1% |
| 流体温度 | Omega-K型铠装热电偶 | 0~800℃ | ±0.5℃ |
| 壁面温度 | Omega-K型线状热电偶 | 0~260℃ | ±0.5℃ |
Fig.2 Experimental test section: (a) schematic diagram of the structure of the experimental section; (b) schematic diagram of the circumferential arrangement of thermocouples; (c) schematic diagram of segmented particle size
Fig.3 Microstructure characterization: (a) three-gradient surface; (b) 300 μm copper powder porous surface; (c) 150 μm copper powder porous surface; (d) 100 μm copper powder porous surface
Fig.4 Characterization of wettability and capillary force of sintered/electroplated layers: (a) wettability characterization; (b) capillary force characteristic diagram
| [1] | Butrymowicz D, Gagan J, Łukaszuk M, et al. Experimental validation of new approach for waste heat recovery from combustion engine for cooling and heating demands from combustion engine for maritime applications[J]. Journal of Cleaner Production, 2021, 290: 125206. |
| [2] | Troeger A. Combating the energy crisis[J]. Solar RRL, 2023, 7(1): 2201038. |
| [3] | Agbenyega J. Energy crisis[J]. Materials Today, 2009, 12(11): 1. |
| [4] | Akhtaruzzaman M, Rahman M R. Commonality in systemic risk from green and conventional energy[J]. Energy Economics, 2024: 107404. |
| [5] | Katulić S, Čehil M, Schneider D R. Exergoeconomic optimization of a combined cycle power plant's bottoming cycle using organic working fluids[J]. Energy Conversion and Management, 2018, 171: 1721-1736. |
| [6] | Bortolin S, Del Col D, Rossetto L. Flow boiling of R245fa in a single circular microchannel[J]. Heat Transfer Engineering, 2011, 32(13/14): 1160-1172. |
| [7] | Feng Y Q, Shi R J, Liu Y Z, et al. Flow and heat transfer characteristics of nano-organic working fluid during evaporation for organic Rankine cycle[J]. Applied Thermal Engineering, 2023, 218: 119310. |
| [8] | 徐鹏, 林清宇, 徐宏, 等. 多孔管管内流动沸腾传热实验[J]. 化工进展, 2010, 29(S1): 625-629. |
| Xu P, Lin Q Y, Xu H, et al. Experimental study on flow boiling heat transfer in porous tubes[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 625-629. | |
| [9] | Dawidowicz B, Cieśliński J T. Heat transfer and pressure drop during flow boiling of pure refrigerants and refrigerant/oil mixtures in tube with porous coating[J]. International Journal of Heat and Mass Transfer, 2012, 55(9/10): 2549-2558. |
| [10] | Xu H, Dai Y L, Cao H H, et al. Tubes with coated and sintered porous surface for highly efficient heat exchangers[J]. Frontiers of Chemical Science and Engineering, 2018, 12(3): 367-375. |
| [11] | Yarahmadi M, Shahmardan M M, Nazari M, et al. Experimental investigation of the effects of porous medium on subcooled flow boiling heat transfer in a vertical annulus tube[J]. Journal of Enhanced Heat Transfer, 2021, 28(7): 39-53. |
| [12] | Tian H Y, Pei X Y, Wang Y F, et al. Enhanced flow and heat transfer of aviation kerosene in porous media microchannels[J]. Applied Thermal Engineering, 2024, 253: 123624. |
| [13] | Sarwar M S, Jeong Y H, Chang S H. Subcooled flow boiling CHF enhancement with porous surface coatings[J]. International Journal of Heat and Mass Transfer, 2007, 50(17/18): 3649-3657. |
| [14] | Bai P F, Tang T, Tang B. Enhanced flow boiling in parallel microchannels with metallic porous coating[J]. Applied Thermal Engineering, 2013, 58(1/2): 291-297. |
| [15] | 莫冬传, 罗佳利, 汪亚桥, 等. 梯度结构多孔表面强化沸腾及其在相变器件中的应用[J]. 科学通报, 2020, 65(17): 1638-1652. |
| Mo D C, Luo J L, Wang Y Q, et al. Porous surfaces with structural gradient: enhancing boiling heat transfer and its application in phase-change devices[J]. Chinese Science Bulletin, 2020, 65(17): 1638-1652. | |
| [16] | Leng X, Sun L C, Long Y J, et al. Bioinspired superwetting materials for water manipulation[J]. Droplet, 2022, 1(2): 139-169. |
| [17] | Cao S, Wang G H, Yang H, et al. R245fa flow boiling heat transfer in a sintering and electroplating modulated tube[J]. Applied Thermal Engineering, 2023, 219: 119459. |
| [18] | Cao S, Guo J J, Wang G H, et al. Flow boiling heat transfer performance of R245fa in a vertical enhanced evaporator tube with sintering and electroplating composite coats[J]. Applied Thermal Engineering, 2024, 246: 122937. |
| [19] | 卢汉卿. 基于拉普拉斯压差驱动实现液滴定向运输主动式抗细菌黏附的研究[D]. 广州: 广州大学, 2023. |
| Lu H Q. Research on active anti-bacterial adhesion by droplet self-actuated directional transport based on Laplace pressure imbalance[D]. Guangzhou: Guangzhou University, 2023. | |
| [20] | Wattelet J P, Chato J C, Souza A L, et al. Evaporative characteristics of R-134a, MP-39, and R-12 at low mass fluxes[J]. ASHRAE Trans, 1993, 100: 603-615. |
| [21] | Fang X D, Wu Q, Yuan Y L. A general correlation for saturated flow boiling heat transfer in channels of various sizes and flow directions[J]. International Journal of Heat and Mass Transfer, 2017, 107: 972-981. |
| [22] | Pike-Wilson E A, Karayiannis T G. Flow boiling of R245fa in 1.1 mm diameter stainless steel, brass and copper tubes[J]. Experimental Thermal and Fluid Science, 2014, 59: 166-183. |
| [23] | Filonenko G K. Hydraulic resistance in pipes[J]. Teploenergetika, 1954, 1(4): 40-44. |
| [24] | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
| [25] | Ong C L, Thome J R. Macro-to-microchannel transition in two-phase flow (Part 1): Two-phase flow patterns and film thickness measurements[J]. Experimental Thermal and Fluid Science, 2011, 35(1): 37-47. |
| [26] | Zhou S N, Shu B F, Yu Z K, et al. Experimental study and mechanism analysis of the flow boiling and heat transfer characteristics in microchannels with different surface wettability[J]. Micromachines, 2021, 12(8): 881. |
| [27] | Ozawa M, Ami T, Ishihara I, et al. Flow pattern and boiling heat transfer of CO2 in horizontal small-bore tubes[J]. International Journal of Multiphase Flow, 2009, 35(8): 699-709. |
| [28] | Nosrati A, Akhavan-Behabadi M, Sajadi B, et al. Experimental study on the effects of using metal foam on R-134a flow boiling in annular tubes[J]. International Journal of Thermal Sciences, 2022, 177: 107546. |
| [29] | 毛纪金, 张东辉, 孙利利, 等. 两种烧结通道的沸腾传热和阻力特性对比[J]. 化工进展, 2022, 41(7): 3483-3492. |
| Mao J J, Zhang D H, Sun L L, et al. Boiling heat transfer and resistance characteristics of two types of sintered structures[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3483-3492. | |
| [30] | Wang S, Gong M Q, Chen G F, et al. Two-phase heat transfer and pressure drop of propane during saturated flow boiling inside a horizontal tube[J]. International Journal of Refrigeration, 2014, 41: 200-209. |
| [31] | Zhang X Y, Liu Z C, Liu W. Numerical studies on heat transfer and flow characteristics for laminar flow in a tube with multiple regularly spaced twisted tapes[J]. International Journal of Thermal Sciences, 2012, 58: 157-167. |
| [32] | Sajjad U, Hussain I, Sultan M, et al. Determining the factors affecting the boiling heat transfer coefficient of sintered coated porous surfaces[J]. Sustainability, 2021, 13(22): 12631. |
| [33] | 孙利利, 张东辉, 毛纪金, 等. 泡沫铜有无槽道对流动沸腾换热特性的影响[J]. 节能技术, 2022, 40(2): 141-148. |
| Sun L L, Zhang D H, Mao J J, et al. Effect of copper foam with or without channel on flow boiling heat transfer characteristics[J]. Energy Conservation Technology, 2022, 40(2): 141-148. | |
| [34] | 刘东, 舒宇, 淳良. 重力对烧结热管传热性能影响的实验研究[J]. 化学工程, 2018, 46(10): 26-29. |
| Liu D, Shu Y, Chun L. Effect of gravity on heat transfer performance of sintered heat pipe[J]. Chemical Engineering (China), 2018, 46(10): 26-29. |
| [1] | Xianchao REN, Yaxiu GU, Shaobin DUAN, Wenzhu JIA, Hanlin LI. Experimental study on heat and mass transfer performance of elliptical tube-fin evaporative condenser [J]. CIESC Journal, 2025, 76(S1): 75-83. |
| [2] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [3] | Hongxin YU, Ningbo WANG, Yanhua GUO, Shuangquan SHAO. Numerical investigation on the flow and heat transfer characteristics of plate heat exchanger in dynamic ice storage system [J]. CIESC Journal, 2025, 76(S1): 106-113. |
| [4] | Ziteng YAN, Feilong ZHAN, Guoliang DING. Structural design and effect verification of casing-type distributor used in air-conditioners [J]. CIESC Journal, 2025, 76(S1): 152-159. |
| [5] | Linhui YUAN, Yu WANG. Heat dissipation performance of single server immersion jet liquid cooling system [J]. CIESC Journal, 2025, 76(S1): 160-169. |
| [6] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [7] | Bo HUANG, Hao HUANG, Wen WANG, Longkun HE. Analysis of temperature field of membrane liquid cargo in a LNG carrier [J]. CIESC Journal, 2025, 76(S1): 195-204. |
| [8] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [9] | Yunlong SUN, Xiaoxiao XU, Yongfang HUANG, Jichao GUO, Weiwei CHEN. Diabatic visualization of CO2 flow boiling in a horizontal smooth tube [J]. CIESC Journal, 2025, 76(S1): 230-236. |
| [10] | Junlong KONG, Yang BI, Yao ZHAO, Yanjun DAI. Simulation experiment on direct cooling thermal management system for energy storage batteries [J]. CIESC Journal, 2025, 76(S1): 289-296. |
| [11] | Zhiyong JIA, Xiankun SHEN, Xiaocheng LAN, Tiefeng WANG. CFD-DEM simulation of effects of gas density on pressurized fluidization [J]. CIESC Journal, 2025, 76(9): 4383-4397. |
| [12] | Jiaqing ZOU, Zhaoyu ZHANG, Jianguo ZHANG, Boyu ZHANG, Dingsheng LIU, Qing MAO, Ting WANG, Jianjun LI. Generation and evolution of bubbles in channels of bipolar plates of alkaline water electrolyzers for producing hydrogen [J]. CIESC Journal, 2025, 76(9): 4786-4799. |
| [13] | Haimei LUO, Hong WANG, Zhaoming SUN, Yanhua YIN. Analysis and verification of calculation model of heat transfer coefficient of twin screw in the same direction [J]. CIESC Journal, 2025, 76(9): 4809-4823. |
| [14] | Jinqi HU, Chunhua MIN, Xiaolong LI, Yuanhong FAN, Kun WANG. Enhanced fluid chaotic mixing and heat transfer with vibrating blade coupled with flexible plate [J]. CIESC Journal, 2025, 76(9): 4824-4837. |
| [15] | Linkai WU, Zhimin LIN, Liangbi WANG. Improvement and numerical validation of quasi-steady-state frosting model based on thermal and mass transfer effect [J]. CIESC Journal, 2025, 76(8): 4004-4016. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||