CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4383-4397.DOI: 10.11949/0438-1157.20250381
• Special Column: Modeling and Simulation in Process Engineering • Previous Articles Next Articles
Zhiyong JIA(
), Xiankun SHEN, Xiaocheng LAN, Tiefeng WANG(
)
Received:2025-04-14
Revised:2025-05-21
Online:2025-10-23
Published:2025-09-25
Contact:
Tiefeng WANG
通讯作者:
王铁峰
作者简介:贾志勇(2000—),男,博士研究生,jiazy18@tsinghua.org.cn
CLC Number:
Zhiyong JIA, Xiankun SHEN, Xiaocheng LAN, Tiefeng WANG. CFD-DEM simulation of effects of gas density on pressurized fluidization[J]. CIESC Journal, 2025, 76(9): 4383-4397.
贾志勇, 沈宪琨, 蓝晓程, 王铁峰. 气体密度对高压流态化影响的CFD-DEM模拟[J]. 化工学报, 2025, 76(9): 4383-4397.
Add to citation manager EndNote|Ris|BibTeX
| 方程类别 | 控制方程 |
|---|---|
| 气相质量守恒方程 | |
| 气相动量守恒方程 | |
| 颗粒相运动方程 | |
| 相间动量传递方程 | |
| Gidaspow曳力模型 |
Table 1 Model equations
| 方程类别 | 控制方程 |
|---|---|
| 气相质量守恒方程 | |
| 气相动量守恒方程 | |
| 颗粒相运动方程 | |
| 相间动量传递方程 | |
| Gidaspow曳力模型 |
| 参数 | 模拟设置 | 模型验证设置 |
|---|---|---|
| 网格尺寸 | 3dp | 3dp |
| 网格数量(x×y×z) | 18×80×2 | 21×240×2 |
| 气体密度/(kg/m3) | 1.15~92.00 | 1.15 |
| 气体黏度/(Pa·s) | 1.78×10-5 | 1.70×10-5 |
| 颗粒粒径/μm | 60~300 | 250 |
| 颗粒密度/(kg/m3) | 2330 | 2550 |
| 摩擦因数 | 0.1 | 0.1 |
| 法向弹性系数/(N/m) | 7.0 | 7.0 |
| 切向弹性系数/(N/m) | 2.0 | 2.0 |
| 恢复系数 | 0.9 | 0.9 |
| 壁面条件 | 自由滑移 | 自由滑移 |
| 入口边界条件 | 速度入口 | 速度入口 |
| 出口边界条件 | 压力出口 | 压力出口 |
Table 2 Simulation settings
| 参数 | 模拟设置 | 模型验证设置 |
|---|---|---|
| 网格尺寸 | 3dp | 3dp |
| 网格数量(x×y×z) | 18×80×2 | 21×240×2 |
| 气体密度/(kg/m3) | 1.15~92.00 | 1.15 |
| 气体黏度/(Pa·s) | 1.78×10-5 | 1.70×10-5 |
| 颗粒粒径/μm | 60~300 | 250 |
| 颗粒密度/(kg/m3) | 2330 | 2550 |
| 摩擦因数 | 0.1 | 0.1 |
| 法向弹性系数/(N/m) | 7.0 | 7.0 |
| 切向弹性系数/(N/m) | 2.0 | 2.0 |
| 恢复系数 | 0.9 | 0.9 |
| 壁面条件 | 自由滑移 | 自由滑移 |
| 入口边界条件 | 速度入口 | 速度入口 |
| 出口边界条件 | 压力出口 | 压力出口 |
| 流化气体 | 颗粒种类 | 颗粒密度/(kg/m3) | 颗粒类别 | 实验压力/MPa | 关联式参数 | 文献 | |
|---|---|---|---|---|---|---|---|
| K2/(2K1) | 1/K1 | ||||||
| N2 | (1) 煤 | 1247 | A/B | 0.1~6.4 | 28.7 | 0.0494 | [ |
| (2) 焦炭 | 1116 | A/B | |||||
| (3) 玻璃球 | 2472 | A/B | |||||
| N2 | 玻璃珠 | — | B、D | 0.1~4.9 | 33.95 | 0.0465 | [ |
| 空气 | (1) 石英砂 | 2497 | D | 0.5~2.0 | 22.1 | 0.0354 | [ |
| (2) 玻璃珠 | 2571 | ||||||
| N2 | 聚苯乙烯 | 1020 | B、D | 0.1~2.7 | 27.9 | 0.0554 | [ |
| CO2、N2 | (1)石英砂 | 2560 | B | 0.1~1.0 | 31.56 | 0.043 | [ |
| (2)铁粉 | 7800 | ||||||
| N2 | 聚苯乙烯 | 1200 | B/D | 0.1~2.5 | 34.15 | 0.05916 | [ |
| 空气 | (1) 塑料颗粒 | 1010 | D | 0.1~0.4 | 15.69 | 0.0241 | [ |
| (2) 玉米芯 | 924 | ||||||
| (3) 玻璃珠 | 2157 | ||||||
Table 3 Experimental conditions of pressurized fluidization and correlation parameters for Umf
| 流化气体 | 颗粒种类 | 颗粒密度/(kg/m3) | 颗粒类别 | 实验压力/MPa | 关联式参数 | 文献 | |
|---|---|---|---|---|---|---|---|
| K2/(2K1) | 1/K1 | ||||||
| N2 | (1) 煤 | 1247 | A/B | 0.1~6.4 | 28.7 | 0.0494 | [ |
| (2) 焦炭 | 1116 | A/B | |||||
| (3) 玻璃球 | 2472 | A/B | |||||
| N2 | 玻璃珠 | — | B、D | 0.1~4.9 | 33.95 | 0.0465 | [ |
| 空气 | (1) 石英砂 | 2497 | D | 0.5~2.0 | 22.1 | 0.0354 | [ |
| (2) 玻璃珠 | 2571 | ||||||
| N2 | 聚苯乙烯 | 1020 | B、D | 0.1~2.7 | 27.9 | 0.0554 | [ |
| CO2、N2 | (1)石英砂 | 2560 | B | 0.1~1.0 | 31.56 | 0.043 | [ |
| (2)铁粉 | 7800 | ||||||
| N2 | 聚苯乙烯 | 1200 | B/D | 0.1~2.5 | 34.15 | 0.05916 | [ |
| 空气 | (1) 塑料颗粒 | 1010 | D | 0.1~0.4 | 15.69 | 0.0241 | [ |
| (2) 玉米芯 | 924 | ||||||
| (3) 玻璃珠 | 2157 | ||||||
| [1] | Emiola-Sadiq T, Wang J C, Zhang L F, et al. Mixing and segregation of binary mixtures of biomass and silica sand in a fluidized bed[J]. Particuology, 2021, 58: 58-73. |
| [2] | Liu N, Liu X P, Wang F M, et al. CFD simulation study of the effect of baffles on the fluidized bed for hydrogenation of silicon tetrachloride[J]. Chinese Journal of Chemical Engineering, 2022, 45: 219-228. |
| [3] | Lian G Q, Zhong W Q, Liu X J. Effects of gas composition and operating pressure on the heat transfer in an oxy-fuel fluidized bed: a CFD-DEM study[J]. Chemical Engineering Science, 2022, 249: 117368. |
| [4] | Bond N K, Symonds R T, Hughes R W. Pressurized chemical looping for direct reduced iron production: economics of carbon neutral process configurations[J]. Energies, 2024, 17(3): 545. |
| [5] | Zang H Y, Hu S W, Liu X H, et al. Applying a CFD-PBM approach to modeling the flow behavior in pressurized bubbling fluidized beds[J]. Powder Technology, 2025, 452: 120541. |
| [6] | Yan D, Li H Z, Zhu Q S, et al. Theoretical analysis and numerical simulation of the gas-solid hydrodynamics in pressurized bubbling fluidized beds[J]. Powder Technology, 2025, 455: 120789. |
| [7] | Chitester D C, Kornosky R M, Fan L S, et al. Characteristics of fluidization at high pressure[J]. Chemical Engineering Science, 1984, 39(2): 253-261. |
| [8] | Li L, Duan Y Q, Duan L B, et al. Flow characteristics in pressurized oxy-fuel fluidized bed under hot condition[J]. International Journal of Multiphase Flow, 2018, 108: 1-10. |
| [9] | Sidorenko I, Rhodes M J. Influence of pressure on fluidization properties[J]. Powder Technology, 2004, 141(1): 137-154. |
| [10] | King D F, Harrison D. The dense phase of a fluidized-bed at elevated pressures[J]. Transactions of the Institution of Chemical Engineers, 1982, 60(1): 26-30. |
| [11] | Jacob K V, Weimer A W. High-pressure particulate expansion and minimum bubbling of fine carbon powders[J]. AIChE Journal, 1987, 33(10): 1698-1706. |
| [12] | Chan I H, Sishtla C, Knowlton T M. The effect of pressure on bubble parameters in gas-fluidized beds[J]. Powder Technology, 1987, 53(3): 217-235. |
| [13] | Brouwer G C, Wagner E C, van Ommen J R, et al. Effects of pressure and fines content on bubble diameter in a fluidized bed studied using fast X-ray tomography[J]. Chemical Engineering Journal, 2012, 207: 711-717. |
| [14] | Song J L, Liu D Y, Ma J L, et al. Effect of elevated pressure on bubble properties in a two-dimensional gas-solid fluidized bed[J]. Chemical Engineering Research and Design, 2018, 138: 21-31. |
| [15] | Cai P, Schiavetti M, De Michele G, et al. Quantitative estimation of bubble size in PFBC[J]. Powder Technology, 1994, 80(2): 99-109. |
| [16] | Hoffmann A C, Yates J G. Experimental observations of fluidized beds at elevated pressures[J]. Chemical Engineering Communications, 1986, 41(1/2/3/4/5/6): 133-149. |
| [17] | Weimer A W, Quarderer G J. On dense phase voidage and bubble size in high pressure fluidized beds of fine powders[J]. AIChE Journal, 1985, 31(6): 1019-1028. |
| [18] | Zhu X L, Liu Y B, Jiang X J, et al. Effects of pressure and particle size on bubble behaviors in a pseudo 2D pressured fluidized bed with Geldart A/B, B and D particles[J]. Chemical Engineering Journal, 2023, 470: 143904. |
| [19] | Zhu X L, Liu Y B, Li Y H, et al. Bubble behaviors of geldart B particle in a pseudo two-dimensional pressurized fluidized bed[J]. Particuology, 2023, 79: 121-132. |
| [20] | Fu L L, Zhang Q J, Xu G W, et al. Pressure fluctuations in a gas-solid fluidized bed at temperatures up to 1650 ℃[J]. Chemical Engineering Journal, 2023, 468: 143806. |
| [21] | Alghamdi Y A, Peng Z B, Luo C M, et al. Systematic study of pressure fluctuation in the riser of a dual inter-connected circulating fluidized bed: using single and binary particle species[J]. Processes, 2019, 7(12): 890. |
| [22] | Li J H, Kwauk M. Particle-Fluid Two-Phase Flow: the Energy-Minimization Multi-Scale Method[M]. Beijing: Metallurgical Industryl Press, 1994. |
| [23] | Li J, Kuipers J A M. Effect of pressure on gas-solid flow behavior in dense gas-fluidized beds: a discrete particle simulation study[J]. Powder Technology, 2002, 127(2): 173-184. |
| [24] | Li J, Kuipers J A M. On the origin of heterogeneous structure in dense gas-solid flows[J]. Chemical Engineering Science, 2005, 60(5): 1251-1265. |
| [25] | Rietema K, Piepers H W. The effect of interparticle forces on the stability of gas-fluidized beds(Ⅰ): Experimental evidence[J]. Chemical Engineering Science, 1990, 45(6): 1627-1639. |
| [26] | Guo Q, Bordbar A, Ma L K, et al. A CFD-DEM study of the solid-like and fluid-like states in the homogeneous fluidization regime of Geldart A particles[J]. AIChE Journal, 2022, 68(1): e17420. |
| [27] | Morris J D, Daood S S, Chilton S, et al. Mechanisms and mitigation of agglomeration during fluidized bed combustion of biomass: a review[J]. Fuel, 2018, 230: 452-473. |
| [28] | Rhodes M J, Wang X S, Forsyth A J, et al. Use of a magnetic fluidized bed in studying Geldart Group B to A transition[J]. Chemical Engineering Science, 2001, 56(18): 5429-5436. |
| [29] | Molerus O. Interpretation of Geldart's type A, B, C and D powders by taking into account interparticle cohesion forces[J]. Powder Technology, 1982, 33(1): 81-87. |
| [30] | Geldart D. Types of gas fluidization[J]. Powder Technology, 1973, 7(5): 285-292. |
| [31] | Beetstra R, Nijenhuis J, Ellis N, et al. The influence of the particle size distribution on fluidized bed hydrodynamics using high-throughput experimentation[J]. AIChE Journal, 2009, 55(8): 2013-2023. |
| [32] | Barreto G F, Yates J G, Rowe P N. The effect of pressure on the flow of gas in fluidized beds of fine particles[J]. Chemical Engineering Science, 1983, 38(12): 1935-1945. |
| [33] | Schweinzer J, Molerus O. Bubble flow in pressurized gas/solid fluidized beds[J]. Chemical Engineering & Technology, 1987, 10(1): 368-375. |
| [34] | Godlieb W, Deen N, Kuipers J. Discrete particle simulations of high pressure fluidization[C]//Proceedings of the 17th International Congress of Chemical and Process Engineering, (CHISA 2006) Prague, Czech Republic, 2006. |
| [35] | Alavi Shoushtari N, Hosseini S A, Soleimani R. Investigation of segregation of large particles in a pressurized fluidized bed with a high velocity gas: a discrete particle simulation[J]. Powder Technology, 2013, 246: 398-412. |
| [36] | Zhang J P, Li Y, Fan L S. Numerical studies of bubble and particle dynamics in a three-phase fluidized bed at elevated pressures[J]. Powder Technology, 2000, 112(1/2): 46-56. |
| [37] | 李玥嬛, 朱晓丽, 王振波, 等. 基于CFD-DEM方法的加压鼓泡床气固流动特性数值模拟[J]. 排灌机械工程学报, 2024, 42(6): 570-575. |
| Li Y H, Zhu X L, Wang Z B, et al. Numerical simulation of gas-solid flow characteristics in pressurized bubbling fluidized bed based on CFD-DEM method[J]. Journal of Drainage and Irrigation Machinery Engineering, 2024, 42(6): 570-575. | |
| [38] | Xu H B, Shen S Y, Wang W Y, et al. Numerical simulation study on mixing characteristics of binary Geldart-D particles in a pressurized fluidized bed[J]. Powder Technology, 2022, 410: 117838. |
| [39] | Garg R, Galvin J, Li T W, et al. Open-source MFIX-DEM software for gas-solids flows(partⅠ): Verification studies[J]. Powder Technology, 2012, 220: 122-137. |
| [40] | Li T W, Garg R, Galvin J, et al. Open-source MFIX-DEM software for gas-solids flows(partⅡ): Validation studies[J]. Powder Technology, 2012, 220: 138-150. |
| [41] | Li T W, Rabha S, Verma V, et al. Experimental study and discrete element method simulation of Geldart Group A particles in a small-scale fluidized bed[J]. Advanced Powder Technology, 2017, 28(11): 2961-2973. |
| [42] | Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M]. New York: Academic Press, 1994. |
| [43] | Han C, Wang H, Yang L H, et al. Comparison and validation of various drag models for fluidization characteristics of bubble fluidized beds with a high-speed particle image velocimetry experiment[J]. Physics of Fluids, 2023, 35(12): 123330. |
| [44] | Ma H Q, Zhou L Y, Liu Z H, et al. A review of recent development for the CFD-DEM investigations of non-spherical particles[J]. Powder Technology, 2022, 412: 117972. |
| [45] | Wang S, Hu C S, Luo K, et al. Multi-scale numerical simulation of fluidized beds: model applicability assessment[J]. Particuology, 2023, 80: 11-41. |
| [46] | 宋加龙. 加压流化床气固流动特性研究[D]. 南京: 东南大学, 2019. |
| Song J L. The effect of elevated pressure on the fluidiaztion characteristics in gas-solid fluidized bed[D]. Nanjing: Southeast University, 2019. | |
| [47] | Yates Y G, Cheesman D J, Sergeev Y A. Experimental observations of voidage distribution around bubbles in a fluidized bed[J]. Chemical Engineering Science, 1994, 49(12): 1885-1895. |
| [48] | Busciglio A, Vella G, Micale G, et al. Analysis of the bubbling behaviour of 2D gas solid fluidized beds (partⅠ): Digital image analysis technique[J]. Chemical Engineering Journal, 2008, 140(1/2/3): 398-413. |
| [49] | 石孝刚, 赵国静, 吴迎亚, 等. 挡板鼓泡床内气泡特性的CFD模拟分析[J]. 石油学报(石油加工), 2020, 36(1): 113-120. |
| Shi X G, Zhao G J, Wu Y Y, et al. CFD simulation of bubbles behavior in baffled bubbling fluidized bed[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(1): 113-120. | |
| [50] | Wu W Q, Duan L B, Li L, et al. The gas interchange between bubble and emulsion phases in a pressurized fluidized bed by computational fluid dynamics simulations[J]. Industrial & Engineering Chemistry Research, 2021, 60(10): 4142-4152. |
| [51] | Galvin J E, Benyahia S. The effect of cohesive forces on the fluidization of aeratable powders[J]. AIChE Journal, 2014, 60(2): 473-484. |
| [52] | Ye M, van der Hoef M A, Kuipers J A M. The effects of particle and gas properties on the fluidization of Geldart A particles[J]. Chemical Engineering Science, 2005, 60(16): 4567-4580. |
| [53] | Moreno-Atanasio R, Xu B H, Ghadiri M. Computer simulation of the effect of contact stiffness and adhesion on the fluidization behaviour of powders[J]. Chemical Engineering Science, 2007, 62(1/2): 184-194. |
| [54] | Hossain N, Metcalfe R. Performance analysis of a 2D numerical model in estimating minimum fluidization velocity for fluidized beds[J]. Particuology, 2023, 77: 116-127. |
| [55] | Nakamura M, Hamada Y, Toyama S, et al. An experimental investigation of minimum fluidization velocity at elevated temperatures and pressures[J]. The Canadian Journal of Chemical Engineering, 1985, 63(1): 8-13. |
| [56] | Zhu Z P, Na Y J, Lu Q G. Effect of pressure on minimum fluidization velocity[J]. Journal of Thermal Science, 2007, 16(3): 264-269. |
| [57] | Feng R T, Li J G, Cheng Z H, et al. Influence of particle size distribution on minimum fluidization velocity and bed expansion at elevated pressure[J]. Powder Technology, 2017, 320: 27-36. |
| [58] | Nie W, Dong L B, Hao Z H, et al. Influence of pressure on fundamental characteristics in gas fluidized beds of coarse particle[J]. International Journal of Chemical Reactor Engineering, 2019, 17(2): 20170217. |
| [59] | Xu H B, Wang W Y, Zhong W Q, et al. Experimental study of fluidization characteristics of Geldart-D particles in pressurized bubbling fluidized bed[J]. Advanced Powder Technology, 2022, 33(3): 103453. |
| [60] | Wen C Y, Yu Y H, Mechanics of fluidization [J]. Chemical Engineering Progress, Symposium Series, 1966, 62(1): 100-111. |
| [61] | 刘明辉, 丁忠伟, 张同旺, 等. 气-固加压流化床压力脉动信号的分析[J]. 计算机与应用化学, 2011, 28(10): 1281-1284. |
| Liu M H, Ding Z W, Zhang T W, et al. Analysis of pressure fluctuation signals in a pressured fluidized bed[J]. Computers and Applied Chemistry, 2011, 28(10): 1281-1284. | |
| [62] | Li J, Kuipers J A M. Effect of competition between particle-particle and gas-particle interactions on flow patterns in dense gas-fluidized beds[J]. Chemical Engineering Science, 2007, 62(13): 3429-3442. |
| [63] | Ostermeier P, Fischer F, Fendt S, et al. Coarse-grained CFD-DEM simulation of biomass gasification in a fluidized bed reactor[J]. Fuel, 2019, 255: 115790. |
| [1] | Ziteng YAN, Feilong ZHAN, Guoliang DING. Structural design and effect verification of casing-type distributor used in air-conditioners [J]. CIESC Journal, 2025, 76(S1): 152-159. |
| [2] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [3] | Songyuan GUO, Xiaoqing ZHOU, Wubing MIAO, Bin WANG, Rui ZHUAN, Qingtai CAO, Chengcheng CHEN, Guang YANG, Jingyi WU. Numerical study on characteristics of pressurized discharge in liquid oxygen tank equipped with porous plate in the ascent period of rocket [J]. CIESC Journal, 2025, 76(S1): 62-74. |
| [4] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [5] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [6] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [7] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [8] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [9] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [10] | Junlong KONG, Yang BI, Yao ZHAO, Yanjun DAI. Simulation experiment on direct cooling thermal management system for energy storage batteries [J]. CIESC Journal, 2025, 76(S1): 289-296. |
| [11] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [12] | Kaiyuan YANG, Xizhong CHEN. Comparison of discrete element method and finite-discrete element method for simulation of agglomerate breakage [J]. CIESC Journal, 2025, 76(9): 4398-4411. |
| [13] | Yifei WANG, Yuxing LI, Xin OUYANG, Xuefeng ZHAO, Lan MENG, Qihui HU, Buze YIN, Yaqi GUO. Numerical calculation of CO2 pipeline fracture propagation based on crack tip decompression characteristics [J]. CIESC Journal, 2025, 76(9): 4683-4693. |
| [14] | Sheng CHEN, Zizheng LI, Chao MIAO, Xuegang BAI, Fei LI, Jiaxuan LIU, Tiantian LI, Shuang YANG, Rongrong LYU, Jiangyun WANG. Three-dimensional CFD simulation of non-uniform diffusion characteristic of high-risk chlorine gas in large-scale dense scene [J]. CIESC Journal, 2025, 76(9): 4630-4643. |
| [15] | Qinqin XIE, Junqi WENG, Zhenli LIN, Guanghua YE, Xinggui ZHOU. Effects of industrial catalyst structure on methanol to aromatics in a packed bed reactor [J]. CIESC Journal, 2025, 76(9): 4487-4498. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||