1 |
Bergamasco R, Konradt-Moraes L C, Vieira M F, et al. Performance of a coagulation-ultrafiltration hybrid process for water supply treatment[J]. Chemical Engineering Journal, 2011, 166: 483-489.
|
2 |
Dickhout J M, Moreno Y, Biesheuvel P M, et al. Produced water treatment by membranes: a review from acolloidal perspective[J]. Journal of Colloid and Interface Science, 2017, 487: 523-534.
|
3 |
Muhamad M S, Salim M R, Lau W J, et al. A review on bisphenol A occurrences, health effects and treatment process via membrane technology for drinking water[J]. Environmental Science and Pollution Research, 2016, 23: 11549-11567.
|
4 |
Gao W, Liang H, Ma J, et al. Membrane fouling control in ultrafiltration technology for drinking water production: a review[J]. Desalination, 2011, 272: 1-8.
|
5 |
Lai C H, Chou Y C, Yeh H H. Assessing the interaction effects of coagulation pretreatment and membrane material on UF fouling control using HPSEC combined with peak-fitting[J]. Journal of Membrane Science, 2015, 474: 207-214.
|
6 |
Snyder S A, Adham S, Redding A M, et al. Role of membranes and activated carbonin the removal of endocrine disruptors and pharmaceuticals[J]. Desalination, 2007, 202: 156-181.
|
7 |
Exall K N, Vanloon G W. Using coagulants to remove organic matter[J]. American Water Works Association, 2000, 92: 93-102
|
8 |
郜玉楠, 王信之, 宗子翔, 等. 混凝-超滤短流程工艺膜污染特性及防治研究[J]. 水处理技术, 2017, (3): 78-81.
|
|
Gao Y N, Wang X Z, Zong Z X, et al. Study on membrane pollution characteristicsand prevention of coagulation-ultrafiltration short process[J]. Water Treatment Technology, 2017, (3): 78-81.
|
9 |
Chen L, Tian Y, Cao C Q, et al. Interaction energy evaluation of soluble microbial products (SMP) on different membrane surfaces: role of the reconstructed membrane topology[J]. Water Research, 2012, 46: 2693-2704.
|
10 |
张冬, 董岳, 周东菊, 等. 基于XDLVO理论的超滤膜污染机理研究[J]. 中国给水排水, 2016, 32(21): 66-70.
|
|
Zhang D, Dong Y, Zhou D J, et al. Study on fouling mechanism of ultrafiltration membrane based on XDLVO theory[J]. China Water and Wastewater, 2016, 32(21): 66-70.
|
11 |
Brant J A, Childress A E. Assessing short-range membrane-colloid interactions using surface energetics[J]. Journal of Membrane Science, 2002, 203: 257-273.
|
12 |
Shen C, Wang F, Li B, et al. Application of DLVO energy map to evaluate interactions between spherical colloids and rough surfaces[J]. Langmuir, 2012, 28: 14681-14692.
|
13 |
Hoek E M V, Agarwal G K. Extended DLVO interactions between spherical particles and rough surfaces[J]. Journal of Colloid and Interface Science, 2006, 298: 50-58.
|
14 |
Cai X, Zhang M, Yang L, et al. Quantification of interfacial interactions between a rough sludge floc and membrane surface in a membrane bioreactor[J]. Journal of Colloid and Interface Science, 2017, 490: 710-718.
|
15 |
Wu W, Giese R F, van Oss C J. Stability versus flocculation of particle suspensions inwater - correlation with the extended DLVO approach for aqueous systems, compared with classical DLVO theory[J]. Colloids and Surfaces B-Biointerfaces, 1999, 14: 47-55.
|
16 |
van Oss C J. Acid-base interfacial interactions in aqueous media[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 1993, 78: 1-49.
|
17 |
Kuehnl W, Piry A, Kaufmann V, et al. Impact of colloidal interactions on the flux in cross-flow microfiltration of milk at different pH values: a surface energy approach[J]. Journal of Membrane Science, 2010, 352: 107-115.
|
18 |
Kim S, Hoek E M V. Interactions controlling biopolymer fouling of reverse osmosis membranes[J]. Desalination, 2007, 202: 333-342.
|
19 |
Zhao L, Shen L, He Y, et al. Influence of membrane surface roughness on interfacial interactions with sludge flocs in a submerged membrane bioreactor[J]. Journal of Colloid and Interface Science, 2015, 446: 84-90.
|
20 |
Gourley L, Britten M, Gauthier S F, et al. Characterization of adsorptive fouling on ultrafiltration membranes by peptides mixtures using contact angle measurements[J]. Journal of Membrane Science, 1994, 97: 283-289.
|
21 |
梁华杰. 分形理论在混凝中的应用研究[D]. 武汉: 武汉科技大学, 2006.
|
|
Liang H J. Application of fractal theory in coagulation[D]. Wuhan: Wuhan University of Science and Technology, 2006
|
22 |
Hoek E M V, Bhattacharjee S, Elimelech M. Effect of membrane surface roughness on colloid-membrane DLVO interactions[J]. Langmuir, 2003, 19: 4836-4847.
|
23 |
Bhattacharjee S, Ko C H, Elimelech M. DLVO interaction between rough surfaces[J]. Langmuir, 1998, 14: 3365-3375.
|
24 |
Lenhof A M. Contributions of surface features to the electrostatic properties of rough colloidal particles[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 1994, 87: 49-59.
|
25 |
Cai X, Yang L, Wang Z, et al. Influences of fractal dimension of membrane surface on interfacial interactions related to membrane fouling in a membrane bioreactor[J]. Journal of Colloid and Interface Science, 2017, 500: 79-87.
|
26 |
Chen J, Lin H, Shen L, et al. Realization of quantifying interfacial interactions between a randomly rough membrane surface and a foulant particle[J]. Bioresource Technology, 2017, 226: 220-228.
|
27 |
寇朝卫, 张干伟, 沈舒苏, 等. 基于XDLVO理论分析物理化学相互作用对纳滤膜有机污染影响[J]. 水处理技术, 2017, (3): 32-39.
|
|
Kou C W, Zhang G W, Shen S S, et al. Analysis of physicochemical interaction on oganic pollution of nanofiltration membranes based on XDLVO theory[J]. Water Treatment Technology, 2017, (3): 32-39.
|
28 |
Nashida S, Verliefde A R D, Vicki C, et al. Assessment of physicochemical interactions in hollow fibre ultrafiltration membrane by contact angle analysis[J]. Journal of Membrane Science, 2012, 403/404: 32-40.
|
29 |
Wang L, Miao R, Wang X, et al. Fouling behavior of typical organic foulants in polyvinylidene fluoride ultrafiltration membranes: characterization from microforces[J]. Environmental Science & Technology, 2013, 47: 3708-3714.
|
30 |
高欣玉, 纵瑞强, 王平, 等. xDLVO理论解析微滤膜海藻酸钠污染中pH影响机制[J]. 中国环境科学, 2014, 34: 958-965.
|
|
Gao X Y, Zong R Q, Wang P, et al. XDLVO theory to analyse the mechanism of pH effect in sodium alginate pollution of microfiltration membrane[J]. China Environmental Science, 2014, 34: 958-965.
|
31 |
姚淑娣, 高欣玉, 郭本华, 等. XDLVO理论解析钙离子对腐殖酸反渗透膜污染的影响机制[J]. 环境科学, 2012, 33: 1884-1890.
|
|
Yao S D, Gao X Y, Guo B H, et al. XDLVO theory to analyse the mechanism of Ca2+ influencing humic acid reverse osmosis membrane pollution[J]. Environmental Science, 2012, 33: 1884-1890.
|