化工学报 ›› 2022, Vol. 73 ›› Issue (10): 4679-4691.DOI: 10.11949/0438-1157.20220862
张兰河1(), 汪露1, 李梓萌1, 唐宏1(
), 郭静波2, 贾艳萍1, 张明爽1
收稿日期:
2022-06-21
修回日期:
2022-08-23
出版日期:
2022-10-05
发布日期:
2022-11-02
通讯作者:
张兰河,唐宏
作者简介:
张兰河(1971—),男,博士,教授,zhanglanhe@163.com
基金资助:
Lanhe ZHANG1(), Lu WANG1, Zimeng LI1, Hong TANG1(
), Jingbo GUO2, Yanping JIA1, Mingshuang ZHANG1
Received:
2022-06-21
Revised:
2022-08-23
Online:
2022-10-05
Published:
2022-11-02
Contact:
Lanhe ZHANG, Hong TANG
摘要:
化妆品生产过程中产生大量的阴离子表面活性剂废水,具有有机物浓度高和易产生泡沫的特点,影响普通超滤膜生物反应器(UMBR)的处理效果和稳定运行。采用自制的电极超滤膜生物反应器(EMBR)处理阴离子表面活性剂废水,考察电流强度对EMBR污染物处理效果和活性污泥性质的影响,探索膜污染的机理。结果表明:与UMBR相比,在电场能的作用下,EMBR滤饼层的有机物含量较低,跨膜压差(TMP)降低50%左右,膜污染较轻。当电流强度为10 mA时,COD去除率和微生物活性最高,分别为97.92%和41.6 mg/(g TSS·h);滤饼层有机物含量最低,PN、PS和HA的浓度分别为5.6、8.02、0.85 mg/L。较低的电流强度即可促进微生物活性和污染物去除率的提高,有效控制膜污染。
中图分类号:
张兰河, 汪露, 李梓萌, 唐宏, 郭静波, 贾艳萍, 张明爽. 电极超滤膜生物反应器处理阴离子表面活性剂废水[J]. 化工学报, 2022, 73(10): 4679-4691.
Lanhe ZHANG, Lu WANG, Zimeng LI, Hong TANG, Jingbo GUO, Yanping JIA, Mingshuang ZHANG. The treatment of anionic surfactant wastewater using electrode ultrafiltration membrane bioreactor[J]. CIESC Journal, 2022, 73(10): 4679-4691.
运行阶段 | 反应器 | PN/(mg/L) | PS/(mg/L) | EPS/(mg/L) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SMP | LB | TB | SMP | LB | TB | SMP | LB | TB | 总量 | ||
S1 | EMBR | 4.61 | 3.82 | 5.60 | 7.07 | 4.76 | 3.49 | 11.68 | 8.58 | 9.09 | 29.35 |
UMBR | 4.61 | 4.22 | 5.40 | 8.33 | 2.55 | 5.70 | 12.94 | 6.76 | 11.10 | 30.80 | |
S2 | EMBR | 5.60 | 5.20 | 8.17 | 9.07 | 5.60 | 7.70 | 14.67 | 10.80 | 15.87 | 41.34 |
UMBR | 4.02 | 5.01 | 5.99 | 4.97 | 7.70 | 7.91 | 8.99 | 12.71 | 13.91 | 35.61 | |
S3 | EMBR | 5.20 | 4.81 | 5.40 | 19.38 | 12.43 | 11.38 | 24.58 | 17.24 | 16.78 | 58.60 |
UMBR | 3.82 | 4.61 | 6.19 | 3.28 | 3.18 | 8.86 | 7.10 | 7.79 | 15.05 | 29.94 |
表1 活性污泥EPS中PN、PS的含量变化
Table 1 Content change of PN and PS in the EPS of activated sludge
运行阶段 | 反应器 | PN/(mg/L) | PS/(mg/L) | EPS/(mg/L) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SMP | LB | TB | SMP | LB | TB | SMP | LB | TB | 总量 | ||
S1 | EMBR | 4.61 | 3.82 | 5.60 | 7.07 | 4.76 | 3.49 | 11.68 | 8.58 | 9.09 | 29.35 |
UMBR | 4.61 | 4.22 | 5.40 | 8.33 | 2.55 | 5.70 | 12.94 | 6.76 | 11.10 | 30.80 | |
S2 | EMBR | 5.60 | 5.20 | 8.17 | 9.07 | 5.60 | 7.70 | 14.67 | 10.80 | 15.87 | 41.34 |
UMBR | 4.02 | 5.01 | 5.99 | 4.97 | 7.70 | 7.91 | 8.99 | 12.71 | 13.91 | 35.61 | |
S3 | EMBR | 5.20 | 4.81 | 5.40 | 19.38 | 12.43 | 11.38 | 24.58 | 17.24 | 16.78 | 58.60 |
UMBR | 3.82 | 4.61 | 6.19 | 3.28 | 3.18 | 8.86 | 7.10 | 7.79 | 15.05 | 29.94 |
运行阶段 | 反应器 | Zeta电位/mV | 接触角/(°) | ||
---|---|---|---|---|---|
纯水 | 甘油 | 二碘甲烷 | |||
S1阶段 | EMBR | -39.48 | 70.06 | 87.81 | 37.83 |
UMBR | -42.22 | 79.10 | 92.62 | 38.40 | |
S2阶段 | EMBR | -35.28 | 72.54 | 89.97 | 40.31 |
UMBR | -38.32 | 80.11 | 91.91 | 41.11 | |
S3阶段 | EMBR | -35.51 | 83.91 | 95.65 | 38.88 |
UMBR | -36.03 | 85.04 | 94.77 | 39.60 | |
PVDF膜 | 未污染膜 | -34.18 | 61.77 | 52.84 | 46.29 |
表2 活性污泥的接触角和Zeta电位变化
Table 2 The change of contact angle and Zeta potential of activated sludge
运行阶段 | 反应器 | Zeta电位/mV | 接触角/(°) | ||
---|---|---|---|---|---|
纯水 | 甘油 | 二碘甲烷 | |||
S1阶段 | EMBR | -39.48 | 70.06 | 87.81 | 37.83 |
UMBR | -42.22 | 79.10 | 92.62 | 38.40 | |
S2阶段 | EMBR | -35.28 | 72.54 | 89.97 | 40.31 |
UMBR | -38.32 | 80.11 | 91.91 | 41.11 | |
S3阶段 | EMBR | -35.51 | 83.91 | 95.65 | 38.88 |
UMBR | -36.03 | 85.04 | 94.77 | 39.60 | |
PVDF膜 | 未污染膜 | -34.18 | 61.77 | 52.84 | 46.29 |
图9 膜-污泥絮体的分离距离和特定相互作用能的函数曲线(污泥絮体尺寸为3 μm、pH 7.0、温度293.15 K)
Fig.9 Function curve of separation distance and specific interaction energy between membrane and sludge flocs (sludge flocs size of 3 μm, pH 7.0 and temperature 293.15 K)
1 | Arnaldos M, Pagilla K. Effluent dissolved organic nitrogen and dissolved phosphorus removal by enhanced coagulation and microfiltration[J]. Water Research, 2010, 44(18): 5306-5315. |
2 | Beschkov V, Velizarov S, Agathos S N, et al. Bacterial denitrification of waste water stimulated by constant electric field[J]. Biochemical Engineering Journal, 2004, 17(2): 141-145. |
3 | 宓益磊, 樊金红, 马鲁铭. 电-生物强化技术在水处理中的应用[J]. 水处理技术, 2009, 35(1): 34-38. |
Mi Y L, Fan J H, Ma L M. Application of bioelectrochemical technology in wastewater treatment[J]. Technology of Water Treatment, 2009, 35(1): 34-38. | |
4 | Chang Y H D, Grodzinsky A J, Wang D I C. Augmentation of mass transfer through electrical means for hydrogel-entrapped Escherichia coli cultivation[J]. Biotechnology and Bioengineering, 1995, 48(2): 149-157. |
5 | She P, Song B, Xing X H, et al. Electrolytic stimulation of bacteria Enterobacter dissolvens by a direct current[J]. Biochemical Engineering Journal, 2006, 28(1): 23-29. |
6 | 陈树德, 张红锋, 陈家森, 等. 低频电磁场对细胞生物效应的研究[J]. 中华物理医学杂志, 1998(2): 78-80. |
Chen S D, Zhang H F, Chen J S, et al. Study on biological effects of low frequency electromagnetic fields on cell[J]. Chinese Journal of Physical Medicine, 1998(2): 78-80. | |
7 | Gregory K B, Bond D R, Lovley D R. Graphite electrodes as electron donors for anaerobic respiration[J]. Environmental Microbiology, 2004, 6(6): 596-604. |
8 | Pous N, Koch C, Vilà-Rovira A, et al. Monitoring and engineering reactor microbiomes of denitrifying bioelectrochemical systems[J]. RSC Advances, 2015, 5(84): 68326-68333. |
9 | 冯小晏, 冯华军, 汪美贞, 等. 生物耦合技术在水处理中的应用[J]. 科技通报, 2012, 28(3): 139-142. |
Feng X Y, Feng H J, Wang M Z, et al. Application of bio-electrochemical technology in wastewater treatment[J]. Bulletin of Science and Technology, 2012, 28(3): 139-142. | |
10 | Skadberg B, Geoly-Horn S L, Sangamalli V, et al. Influence of pH, current and copper on the biological dechlorination of 2, 6-dichlorophenol in an electrochemical cell[J]. Water Research, 1999, 33(9): 1997-2010. |
11 | 李玉平, 曹宏斌, 张懿. 生物电催化方法处理三氯乙酸的研究[J]. 环境科学, 2005, 26(4): 55-58. |
Li Y P, Cao H B, Zhang Y. Reductive dechlorination of trichloroacetic acid by bioelectrochemically catalytic method[J]. Environmental Science, 2005, 26(4): 55-58. | |
12 | 竺云波, 许炉生, 吴伟勇, 等. 生物膜电极反应器降解苯胺的研究[J]. 环境污染与防治, 2009, 31(10): 61-63. |
Zhu Y B, Xu L S, Wu W Y, et al. Study on the degradation of aniline by biofilm electrode reactor[J]. Environmental Pollution & Control, 2009, 31(10): 61-63. | |
13 | 康博, 黄卫民, 张应玖, 等. 生物膜电极反应器降解对氨基二甲基苯胺的研究[J]. 高等学校化学学报, 2007, 28(3): 556-558. |
Kang B, Huang W M, Zhang Y J, et al. Studies on the 4-amino-dimethyl-aniline hydrochloride degraded by a bio-electro reactor[J]. Chemical Journal of Chinese Universities, 2007, 28(3): 556-558. | |
14 | 王雪峰, 李建宏, 马宇翔, 等. 微电解水处理器的杀菌作用研究[J]. 给水排水, 2001, 27(11): 40-42. |
Wang X F, Li J H, Ma Y X,et al. Study on sterilization effect of micro-electrolyser on bacteria[J]. Water & Wastewater Engineering, 2001, 27(11): 40-42. | |
15 | 钟方丽, 曹宏斌, 李鑫钢. 外电场作用下的生物膜传质模型[J]. 吉林化工学院学报, 2003, 20(4): 59-61. |
Zhong F L, Cao H B, Li X G. Study on the model of mass transfer within biofilm under electric field[J]. Journal of Jilin Institute of Chemical Technology, 2003, 20(4): 59-61. | |
16 | Zhang L H, Zhang M S, Guo J B, et al. Effects of K+ salinity on the sludge activity and the microbial community structure of an A2O process[J]. Chemosphere, 2019, 235: 805-813. |
17 | Zhang W J, Cao B D, Wang D S, et al. Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances (EPS)[J]. Water Research, 2016, 88: 728-739. |
18 | Kühnl W, Piry A, Kaufmann V, et al. Impact of colloidal interactions on the flux in cross-flow microfiltration of milk at different pH values: a surface energy approach[J]. Journal of Membrane Science, 2010, 352(1/2): 107-115. |
19 | Shen L G, Lei Q, Chen J R, et al. Membrane fouling in a submerged membrane bioreactor: impacts of floc size[J]. Chemical Engineering Journal, 2015, 269: 328-334. |
20 | Zhang L H, Wang L, Zhang Y N, et al. The performance of electrode ultrafiltration membrane bioreactor in treating cosmetics wastewater and its anti-fouling properties[J]. Environmental Research, 2022, 206: 112629. |
21 | 任晓克. 多维电极生物膜工艺反硝化脱氮性能研究[D]. 北京: 北京工业大学, 2015. |
Ren X K. Study on denitrification performance of multi-electrode biofilm process[D]. Beijing: Beijing University of Technology, 2015. | |
22 | Blumer-Schuette S E, Kataeva I, Westpheling J, et al. Extremely thermophilic microorganisms for biomass conversion: status and prospects[J]. Current Opinion in Biotechnology, 2008, 19(3): 210-217. |
23 | Liu X W, Sheng G P, Yu H Q. Physicochemical characteristics of microbial granules[J]. Biotechnology Advances, 2009, 27(6): 1061-1070. |
24 | Cao B D, Zhang W J, Du Y J, et al. Compartmentalization of extracellular polymeric substances (EPS) solubilization and cake microstructure in relation to wastewater sludge dewatering behavior assisted by horizontal electric field: effect of operating conditions[J]. Water Research, 2018, 130: 363-375. |
25 | Wang Z P, Zhang T. Characterization of soluble microbial products (SMP) under stressful conditions[J]. Water Research, 2010, 44(18): 5499-5509. |
26 | 柳丽芬, 赵树昌, 邓贻钊. 活性污泥化学组成的分析[J]. 环境科学, 1990, 11(2): 45-48, 96. |
Liu L F, Zhao S C, Deng Y Z. Analysis of chemical composition of activated sludge[J]. Environmental Science, 1990, 11(2): 45-48, 96. | |
27 | D'Abzac P, Bordas F, Hullebusch E, et al. Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols[J]. Applied Microbiology and Biotechnology, 2010, 85(5): 1589-1599. |
28 | Zhu L, Qi H Y, Lv M L, et al. Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies[J]. Bioresource Technology, 2012, 124: 455-459. |
29 | Zhang P, Chen Y P, Guo J S, et al. Adsorption behavior of tightly bound extracellular polymeric substances on model organic surfaces under different pH and cations with surface plasmon resonance[J]. Water Research, 2014, 57: 31-39. |
30 | 王琰, 钱飞跃, 王建芳, 等. 亚硝化颗粒污泥中EPS提取方法与组成特性的比较研究[J]. 环境科学学报, 2015, 35(11): 3515-3521. |
Wang Y, Qian F Y, Wang J F, et al. Comparative study on extraction methods and composition of extracellular polymeric substances(EPS) in granular nitrosation sludge[J]. Acta Scientiae Circumstantiae, 2015, 35(11): 3515-3521. | |
31 | 张银会, 王静, 林于廉, 等. 基于激光粒度校正的活性污泥粒径分析方法[J]. 中国给水排水, 2016, 32(17): 85-89. |
Zhang Y H, Wang J, Lin Y L, et al. Optimization method for activated sludge size analysis based on laser particle size correction[J]. China Water & Wastewater, 2016, 32(17): 85-89. | |
32 | Wang Z W, Wu Z C, Yin X, et al. Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: membrane foulant and gel layer characterization[J]. Journal of Membrane Science, 2008, 325(1): 238-244. |
33 | 蒋波. 阳离子型表面活性剂对活性污泥脱水性能的影响及作用机理研究[D]. 上海: 上海交通大学, 2007. |
Jiang B. Research on the effect and mechanism of cationic surfactants on the dewaterability of activated sludge[D]. Shanghai: Shanghai Jiao Tong University, 2007. | |
34 | Liwarska-Bizukojc E, Bizukojc M. Digital image analysis to estimate the influence of sodium dodecyl sulphate on activated sludge flocs[J]. Process Biochemistry, 2005, 40(6): 2067-2072. |
[1] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[2] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[3] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[4] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[5] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[6] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[7] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[8] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[9] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[10] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[11] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[12] | 闫新龙, 黄志刚, 胡清勋, 张新, 胡晓燕. Cu/Co掺杂多孔炭活化过硫酸盐降解水中硝基酚研究[J]. 化工学报, 2023, 74(3): 1102-1112. |
[13] | 王思琪, 顾天宇, 陈献富, 王通, 李佳, 柯威, 李小锋, 范益群. 陶瓷膜用于杜仲叶提取液澄清的分离特性与膜污染机制研究[J]. 化工学报, 2023, 74(3): 1113-1125. |
[14] | 章承浩, 罗京, 张吉松. 微反应器内基于氮氧自由基催化剂连续氧气/空气氧化反应的研究进展[J]. 化工学报, 2023, 74(2): 511-524. |
[15] | 张梦波, 楼琳瑾, 冯艺荣, 郑雨婷, 张浩淼, 王靖岱, 阳永荣. 烷基铝氧烷合成技术研究进展[J]. 化工学报, 2023, 74(2): 525-534. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||