化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 261-271.DOI: 10.11949/0438-1157.20200067
收稿日期:
2020-01-16
修回日期:
2020-02-04
出版日期:
2020-04-25
发布日期:
2020-04-25
通讯作者:
沈国清
作者简介:
滕达(1974—),男,博士研究生,基金资助:
Da TENG(),Tielin LI,Ang LI,Liansuo AN,Guoqing SHEN(),Shiping ZHANG
Received:
2020-01-16
Revised:
2020-02-04
Online:
2020-04-25
Published:
2020-04-25
Contact:
Guoqing SHEN
摘要:
无机陶瓷膜作为多孔介质具有分离效率高、耐酸、耐碱等优点,被视为在海水淡化、废水处理、气体分离等领域的研究热点。采用Al2O3管式单通道陶瓷膜材料构建膜组件,以燃煤电厂自来水、烟气冷凝水、脱硫废水三种不同水质为例,开展低跨膜压差下的膜组件透水性能实验,研究了膜参数、跨膜压差及水体温度等因素对渗透通量、渗透水质的影响,并对引发膜污染的机理过程进行了探讨分析。实验结果表明:陶瓷膜管的结构参数是关键因素,如孔隙率、孔径及厚度等;低跨膜压差下的渗透通量随压力增大呈线性提高,并未发现浓差极化现象,水体温度变化通过改变黏度进而影响渗透通量,同时水质较差时会导致渗透通量降低;陶瓷膜管的孔径是影响渗透水质的核心要素,微滤与纳滤膜对改善悬浮物含量、浊度及色度效果明显,不同孔径对盐度、电导率影响不同;从SEM图可以看出,污染物在膜表面或膜内部发生的沉积、架桥等现象导致严重的膜污染。充分认识影响陶瓷膜管渗透特性的关键因素及污染物的作用机理,对提高无机陶瓷膜的应用前景具有重要意义。
中图分类号:
滕达, 李铁林, 李昂, 安连锁, 沈国清, 张世平. 单通道陶瓷膜管低压透水性能实验分析[J]. 化工学报, 2020, 71(S1): 261-271.
Da TENG, Tielin LI, Ang LI, Liansuo AN, Guoqing SHEN, Shiping ZHANG. Experimental analysis of low pressure water permeability of single channel ceramic membrane tube[J]. CIESC Journal, 2020, 71(S1): 261-271.
Item | Unit | Tap-water(TW) | Flue gas condensation water(FGCW) | Desulfurization wastewater(DW) |
---|---|---|---|---|
SS | mg·L-1 | 0 | 0~10 | 13487~112284 |
mg·L-1 | 0 | 19 | 731~803 | |
Ca2+ | mg·L-1 | 30 | 201 | 1447~1879 |
Mg2+ | mg·L-1 | 20 | 410 | 3385~3714 |
Na+ | mg·L-1 | 45 | 923 | 7624~9686 |
Cl- | mg·L-1 | 60 | 1689 | 16151~17339 |
pH | 7 | 6.8~6.85 | 6.75~6.80 | |
mg·L-1 | 180 | 800 | 8245~8515 | |
COD | mg·L-1 | 1 | 32 | 423~444 |
表1 实验水质参数
Table 1 Experimental water quality parameters
Item | Unit | Tap-water(TW) | Flue gas condensation water(FGCW) | Desulfurization wastewater(DW) |
---|---|---|---|---|
SS | mg·L-1 | 0 | 0~10 | 13487~112284 |
mg·L-1 | 0 | 19 | 731~803 | |
Ca2+ | mg·L-1 | 30 | 201 | 1447~1879 |
Mg2+ | mg·L-1 | 20 | 410 | 3385~3714 |
Na+ | mg·L-1 | 45 | 923 | 7624~9686 |
Cl- | mg·L-1 | 60 | 1689 | 16151~17339 |
pH | 7 | 6.8~6.85 | 6.75~6.80 | |
mg·L-1 | 180 | 800 | 8245~8515 | |
COD | mg·L-1 | 1 | 32 | 423~444 |
1 | Fu J, Ji M, Wang Z, et al. A new submerged membrane photocatalysis reactor (SMPR) for fulvic acid removal using a nano-structured photocatalyst[J]. Journal of Hazardous Materials, 2006, 131(1/2/3): 238-242. |
2 | Gan Q. Design and operation of an integrated membrane reactor for enzymatic cellulose hydrolysis[J]. Biochemical Engineering Journal, 2002, 12(2): 223-229. |
3 | Shim J K, Yoo I K, Lee Y M. Design and operation considerations for wastewater treatment using a flat submerged membrane bioreactor[J]. Process Biochemistry, 2002, 38(2): 279-285. |
4 | Ghaffour N, Missimer T M, Amy G L. Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability[J]. Desalination, 2013, 309(2): 197-207. |
5 | 宁艳春, 段巧丽, 王兆花, 等. 膜分离技术在废水处理方面的应用与进展[J]. 化工进展, 2011(S1): 828-830. |
Ning Y C, Duan Q L, Wang Z H, et al. Application and progress of membrane separation technology in wastewater treatment [J]. Chemical Industry and Engineering Progress, 2011(S1): 828-830. | |
6 | Chung T S, Zhang S, Wang K Y, et al. Forward osmosis processes: yesterday, today and tomorrow[J]. Desalination, 2012, 287(15): 78-81. |
7 | 王瑛, 李梦, 李文娟. 无机陶瓷膜法处理乳化液废水[J]. 低温建筑技术, 2010, 32(12): 3-5. |
Wang Y, Li M, Li W J. Treatment of emulsified wastewater with inorganic ceramic membrane[J]. Low Temperature Architecture Technology, 2010, 32(12): 3-5. | |
8 | 魏新渝, 王志, 王纪孝, 等. 纳滤深度处理抗生素制药废水膜污染及其控制研究[J]. 膜科学与技术, 2009, 29(4): 91-97. |
Wei X Y, Wang Z, Wang J X, et al. Membrane fouling and its control in advance treatment of antibiotic pharmaceutical wastewater with nano filtration[J]. Membrane Science and Technology, 2009, 29(4): 91-97. | |
9 | 田蒙奎, 尚百伟, 陶文亮. 光催化高级氧化与无机陶瓷膜分离技术耦合的研究[J]. 环境污染与防治, 2012, 34(11): 40-44. |
Tian M K, Shang B W, Tao W L. Study on the coupling of photocatalytic advance oxidation process with inorganic membrane separation technology[J]. Environmental Pollution & Control, 2012, 34(11): 40-44. | |
10 | Hyun S H, Kim G T. Synthesis of ceramic microfiltration membranes for oil/water separation[J]. Sep. Sci. Tech., 1997, 32(18): 2927-2943. |
11 | Huang Y, Zheng C, Li Qi, et al. Numerical simulation of the simultaneous removal of particulate matter in a wet flue gas desulfurization system[J]. Environmental science and pollution research international, 2020, 27(2): 1598-1607. |
12 | Yong H, Phani K, Cilai T, et al. Hybrid zero-valent iron process for removing heavy metals and nitrate from flue-gas-desulfurization wastewater[J]. Separation and Purification Technology, 2013, 118(30): 690-698. |
13 | 曲江源, 齐娜娜, 关彦军, 等. 湿法烟气脱硫塔内传递与化学反应过程CFD模拟[J]. 化工学报, 2019, 70(6): 2117-2128. |
Qu J Y, Qi N N, Guan Y J, et al. CFD simulation of transfer and chemical reaction process in wet flue gas desulfurization tower[J]. CIESC Journal, 2019, 70(6): 2117-2128. | |
14 | Ma S, Chai J, Wu K, et al. Experimental research on bypass evaporation tower technology for zero liquid discharge of desulfurization wastewater[J]. Environmental Technology, 2019, 40(20): 2715-2725. |
15 | 徐志清, 赵焰, 陆梦楠, 等. 基于膜法的火电厂废水零排放技术研究及应用[J]. 中国电机工程学报, 2019, 39(S1): 148-154. |
Xu Z Q, Zhao Y, Lu M N, et al. Study and application on membrane-based wastewater zero liquid discharge technology in a power plant[J]. Proceedings of the CSEE, 2019, 39(S1): 148-154. | |
16 | Enoch G D, Vand B W F, Spiering W. Removal of heavy metals and suspended solids from wastewater from wet lime (stone)—gypson flue gas desulphurization plants by means of hydrophobic and hydrophilic crossflow microfiltration membranes[J]. Journal of Membrane Science, 1994, 87(1/2): 191-198. |
17 | Vakarelski I U, Ishimura K, Higashitani K. Adhesion between silica particle and mica surfaces in water and electrolyte solutions[J]. Journal of Colloid and Interface Science, 2000, 227(1): 111-118. |
18 | Yiantsios S G, Karabelas A J. The effect of gravity on the deposition of micron-sized particles on smooth surface[J]. International Journal of Multiphase Flow, 1998, 24(2): 283-293. |
19 | 周卫青, 刘俊峰, 李进. 化学—微滤膜工艺处理烟气脱硫废水的膜污染及解决方法研究[J]. 给水排水, 2007, (S1): 230-232. |
Zhou W Q, Liu J F, Li J. Study on membrane pollution and solution of flue gas desulfurization wastewater treatment by chemical microfiltration membrane process[J]. Water & Wastewater Engineering, 2007, (S1): 230-232. | |
20 | Zhong Z, Xing W, Jin W, et al. Adhesion of nano sized nickel catalysts in the nano catalysis/UF system[J]. AIChE Journal, 2007, 53(5): 1204-1210. |
21 | 李静舒, 孙王保. 操作条件对渗透汽化法分离乙醇/水的影响[J]. 山西化工, 2019, 39(5): 13-16. |
Li J S, Sun W B. Effect of operating conditions on separation of ethanol/water by pervaporatin[J]. Shanxi Chemical Industry, 2019, 39(5): 13-16. | |
22 | Banat F, Alrub F A, Banimelhem K. Desalination by vacuum membrane distillation: sensitivity analysis[J]. Separation & Purification Technology, 2003, 33(1): 75-87. |
23 | 李恋, 陈志, 杨进飞, 等. 气隙式膜蒸馏在溴化锂吸收式制冷系统中的应用[J]. 化工进展, 202, 39(1): 80-88. |
Li L, Chen Z, Yang J F, et al. Application of air-gap membrane distillation in lithium bromide absorption refrigeration system[J]. Chemical Industry and Engineering Progress, 202, 39(1): 80-88. | |
24 | Yu F, Ming H, Yu H, et al. Enhancing the sensitivity of portable biosensors based on self-powered ion concentration polarization and electrical kinetic trapping[J]. Nano Energy, 2020, 69: 104407. |
25 | 王补宣. 工程传热传质学[M]. 北京: 科学出版社, 2015. |
Wang B X. Engineering Heat and Mass Transfer[M]. Beijing: Science Press, 2015. | |
26 | 邢卫红, 金万勤, 陈日志, 等. 陶瓷膜连续反应器的设计与工程应用[J]. 化工学报, 2010, 61(7): 1666-1672. |
Xing W H, Jin W Q, Chen R Z, et al. Design and application of continuous ceramic membrane reactor[J]. CIESC Journal, 2010, 61(7): 1666-1672. | |
27 | Lee S A, Choo K H, Lee C H, et al. Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment[J]. Industrial & Engineering Chemistry Research, 2001, 40(7): 1712-1719. |
28 | Chen D, Weavers L K, Walker H W. Ultrasonic control of ceramic membrane fouling by particles: effect of ultrasonic factors[J]. Ultrasonics Sonochemistry, 2006, 13(5): 379-387. |
29 | 叶凌碧, 马延令. 微孔膜的截留作用机理和膜的选用[J]. 净水技术, 1984, (2): 8-12. |
Ye L B, Ma Y L. Mechanism of micro porous membrane rejection and selection of membrane[J]. Water Purification Technology, 1984, (2): 8-12. | |
30 | 吴火强. 正渗透技术应用于脱硫废水处理的基础研究[D]. 西安: 西安热工研究院, 2017. |
Wu H Q. Fundamental research on application of forward osmosis technology in treatment of wastewater of fuel gas desulfurization[D]. Xi an: Xi an Thermal Power Research Institute Co., Ltd., 2017. |
[1] | 贾晓宇, 杨剑, 王博, 林梅, 王秋旺. 金属丝网毛细特性的孔隙尺度数值分析[J]. 化工学报, 2023, 74(5): 1928-1938. |
[2] | 王晓萱, 胡晓红, 陆雨楠, 王士勇, 凡凤仙. 旋转膜过滤器内部流动特性数值模拟[J]. 化工学报, 2023, 74(4): 1489-1498. |
[3] | 胡香凝, 尹渊博, 袁辰, 是赟, 刘翠伟, 胡其会, 杨文, 李玉星. 成品油在土壤中运移可视化的实验研究[J]. 化工学报, 2023, 74(4): 1827-1835. |
[4] | 张银宁, 王进卿, 冯致, 詹明秀, 徐旭, 张光学, 池作和. 升温条件下多孔介质内气泡的生长和聚并行为[J]. 化工学报, 2023, 74(4): 1509-1518. |
[5] | 杨辉著, 兰精灵, 杨月, 梁嘉林, 吕传文, 朱永刚. 高功率平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(4): 1561-1569. |
[6] | 王思琪, 顾天宇, 陈献富, 王通, 李佳, 柯威, 李小锋, 范益群. 陶瓷膜用于杜仲叶提取液澄清的分离特性与膜污染机制研究[J]. 化工学报, 2023, 74(3): 1113-1125. |
[7] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
[8] | 王沛, 魏荣阔. 光热驱动多孔氧化铈热化学循环解水制氢非热质平衡模型[J]. 化工学报, 2022, 73(7): 2885-2894. |
[9] | 张宇伦, 陈长坤, 雷鹏. 不同可燃液体层高度下浸润多孔介质砂床组合燃烧特性实验研究[J]. 化工学报, 2022, 73(4): 1826-1833. |
[10] | 王晔, 张婉雨, 汪彬, 耑锐, 任枫, 蔡爱峰, 杨光, 吴静怡. 多孔网幕泡破压力预测模型的建立及实验验证[J]. 化工学报, 2022, 73(3): 1102-1110. |
[11] | 王文松, 杨英英, 陈周林, 杨晴雨, 李帅华, 武卫东. 介观尺度下多孔介质内水结冰相界面演化机制研究[J]. 化工学报, 2022, 73(12): 5343-5354. |
[12] | 黄笑乐, 杨甫, 韩磊, 宁星, 李瑞宇, 董凌霄, 曹虎生, 邓磊, 车得福. 富油煤(长焰煤)孔隙结构三维表征及渗流模拟[J]. 化工学报, 2022, 73(11): 5078-5087. |
[13] | 张兰河, 汪露, 李梓萌, 唐宏, 郭静波, 贾艳萍, 张明爽. 电极超滤膜生物反应器处理阴离子表面活性剂废水[J]. 化工学报, 2022, 73(10): 4679-4691. |
[14] | 梁恒, 刘益才, 汪谦旭, 赵祥乐, 李政. 开孔泡沫金属复合材料有效热导率的研究进展[J]. 化工学报, 2021, 72(S1): 7-20. |
[15] | 张浩, 王姣, 马挺, 李馨怡, 刘军, 王秋旺. 超重条件下泡沫石墨-石蜡相变传热实验研究[J]. 化工学报, 2021, 72(9): 4523-4530. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||