化工学报 ›› 2021, Vol. 72 ›› Issue (2): 1132-1141.DOI: 10.11949/0438-1157.20200972
卿梦霞1(),张鑫1,刘亮1,张巍1,王乐乐3,苏胜2,孔凡海3,向军2()
收稿日期:
2020-07-20
修回日期:
2020-08-10
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
向军
作者简介:
卿梦霞(1993—),女,博士,讲师,基金资助:
QING Mengxia1(),ZHANG Xin1,LIU Liang1,ZHANG Wei1,WANG Lele3,SU Sheng2,KONG Fanhai3,XIANG Jun2()
Received:
2020-07-20
Revised:
2020-08-10
Online:
2021-02-05
Published:
2021-02-05
Contact:
XIANG Jun
摘要:
搭建模拟空预器多段控温实验台,研究不同SO3浓度、SO3/NH3比、不同温度下硫酸氢铵(ABS)与硫酸铵(AS)的生成、沉积与分解特性。在高温条件下发生的初始沉积部位,沉积物均为液态ABS,其失重特性与纯ABS基本一致。而在低温条件下,则根据SO3/NH3比的不同沉积物特性有所变化。SO3/NH3比为2∶1时,沉积物为H2O、H2SO4与少量ABS的混合物,以密集液滴形态存在,呈多段分解特性;SO3/NH3比为1∶1与1∶2时,沉积物为分散性较强的干AS粉末,分解特性与纯AS基本一致。研究结果可为ABS防控提供指导。
中图分类号:
卿梦霞, 张鑫, 刘亮, 张巍, 王乐乐, 苏胜, 孔凡海, 向军. 燃煤烟气脱硝副产物硫酸氢铵/硫酸铵沉积与分解特性研究[J]. 化工学报, 2021, 72(2): 1132-1141.
QING Mengxia, ZHANG Xin, LIU Liang, ZHANG Wei, WANG Lele, SU Sheng, KONG Fanhai, XIANG Jun. Study on deposition and decomposition characteristics of ammonium bisulfate/ammonium sulfate as by-product of denitration in coal-fired flue gas[J]. CIESC Journal, 2021, 72(2): 1132-1141.
SO3浓度/(μl/L) | NH3浓度/(μl/L) | SO3/NH3摩尔比 | 温度设置/℃ | 时间/h | 流量/(ml/min) |
---|---|---|---|---|---|
50, 100, 250, 500,1000, 2000, 4000 | 50, 100, 250, 500, 1000, 2000, 4000 | 2∶1, 1∶1, 1∶2 | 410-270-130 | 12 | 500 |
表1 ABS生成实验工况
Table 1 ABS generation experimental conditions
SO3浓度/(μl/L) | NH3浓度/(μl/L) | SO3/NH3摩尔比 | 温度设置/℃ | 时间/h | 流量/(ml/min) |
---|---|---|---|---|---|
50, 100, 250, 500,1000, 2000, 4000 | 50, 100, 250, 500, 1000, 2000, 4000 | 2∶1, 1∶1, 1∶2 | 410-270-130 | 12 | 500 |
图4 SO3/NH3浓度对ABS/AS初始沉积温度的影响(a); 初始沉积温度与ABS酸露点关系(b)
Fig.4 The influence of SO3/NH3 concentration on the initial deposition temperature of ABS/AS (a); relationship between initial deposition temperature and ABS acid dew point (b)
图6 常温下沉积物表面形貌(a);高低温区沉积物红外光谱(b)
Fig.6 The surface morphology of sediments at room temperature (a); FT-IR spectra of sediments in different temperature range (b)
图7 SO3/NH3比为2∶1时SO3浓度为4000、500 μl/L 时不同温度段沉积物分解特性
Fig.7 The decomposition characteristics of sediments at different temperature ranges when SO3 concentration is 4000 and 500 μl/L under SO3/NH3 ratio is 2∶1 condition
图8 SO3/NH3比为2∶1不同SO3浓度条件下不同温度段沉积物分解特性
Fig.8 The decomposition characteristics of sediments at different temperature ranges and SO3 concentrations under the conditions of SO3/NH3 ratio at 2∶1
图9 SO3/NH3比为1∶1条件下SO3浓度为4000、1000 μl/L时沉积物分解特性
Fig.9 The decomposition characteristics of sediments at different temperature ranges when SO3 concentration is 4000 and 500 μl/L under SO3/NH3 ratio is 1∶1 condition
图10 SO3/NH3比为1∶1不同SO3浓度条件下不同温度段沉积物分解特性
Fig.10 The decomposition characteristics of sediments at different temperature ranges and SO3 concentrations under the conditions of SO3/NH3 ratio at 1∶1
SO3/NH3 | 390~300℃ | 300~296℃ | 296~223℃ | 223~185℃ | 185~131℃ | |
---|---|---|---|---|---|---|
1∶1;1∶2 | >100 μl/L | 大片液体; ABS | 大液珠/小液滴; ABS | 小液滴/白雾;ABS | 白雾;AS | 白雾;AS |
< 100 μl/L | — | — | 小液滴→白雾;ABS→AS | |||
2∶1 | >100 μl/L | 大片液体; ABS | 大液珠/小液滴; ABS | 小液滴/白雾;ABS | 小液滴; H2O/H2SO4/ABS混合物 | 小液滴; H2O/H2SO4/ABS混合物 |
< 100 μl/L | — | — | 白雾→小液滴,ABS→H2O/H2SO4/ABS混合物 |
表2 变温度区间内不同SO3浓度条件下ABS/AS生成与沉积特性
Table 2 The formation and deposition characteristics of ABS/AS under different SO3 concentrations in a variable temperature range
SO3/NH3 | 390~300℃ | 300~296℃ | 296~223℃ | 223~185℃ | 185~131℃ | |
---|---|---|---|---|---|---|
1∶1;1∶2 | >100 μl/L | 大片液体; ABS | 大液珠/小液滴; ABS | 小液滴/白雾;ABS | 白雾;AS | 白雾;AS |
< 100 μl/L | — | — | 小液滴→白雾;ABS→AS | |||
2∶1 | >100 μl/L | 大片液体; ABS | 大液珠/小液滴; ABS | 小液滴/白雾;ABS | 小液滴; H2O/H2SO4/ABS混合物 | 小液滴; H2O/H2SO4/ABS混合物 |
< 100 μl/L | — | — | 白雾→小液滴,ABS→H2O/H2SO4/ABS混合物 |
1 | Zheng C H, Wang Y F, Liu Y, et al. Formation, transformation, measurement, and control of SO3 in coal-fired power plants[J]. Fuel, 2019, 241: 327-346. |
2 | Shen J L, Zheng C H, Xu L J, et al. Atmospheric emission inventory of SO3 from coal-fired power plants in China in the period 2009—2014[J]. Atmospheric Environment, 2019, 197: 14-21. |
3 | Duan L B, Duan Y Q, Sarbassov Y, et al. SO3 formation under oxy-CFB combustion conditions[J]. International Journal of Greenhouse Gas Control, 2015, 43: 172-178. |
4 | Christensen S R, Hansen B B, Johansen K, et al. SO2 oxidation across marine V2O5-WO3-TiO2 SCR catalysts: a study at elevated pressure for preturbine SCR configuration[J]. Emission Control Science and Technology, 2018, 4: 289-299. |
5 | Casagrande L, Lietti L, Nova I, et al. SCR of NO by NH3 over TiO2-supported V2O5-MoO3 catalysts: reactivity and redox behavior[J]. Applied Catalysis B: Environmental, 1999, 22: 63-77. |
6 | Qing M X, Su S, Wang L L, et al. Effects of H2O and CO2 on the catalytic oxidation property of V/W/Ti catalysts for SO3 generation[J]. Fuel, 2019, 237: 545-554. |
7 | Qing M X, Su S, Wang L L, et al. Getting insight into the oxidation of SO2 to SO3 over V2O5-WO3/TiO2 catalysts: reaction mechanism and effects of NO and NH3[J]. Chemical Engineering Journal, 2019, 361: 1215-1224. |
8 | Kikuchi R. Environmental management of sulfur trioxide emission: impact of SO3 on human health[J]. Environmental Management, 2001, 27: 837-844. |
9 | Huang R J, Zhang Y L, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514: 218-222. |
10 | 向柏祥, 杨海瑞, 吕俊复. 燃煤锅炉烟气中SO3生成的化学动力学模型和实验研究[J]. 化工学报, 2017, 68(7): 2896-2909. |
Xiang B X, Yang H R, Lü J F. Kinetic modelling and experimental studies on SO3 generation in flue gas for coal-fired boiler[J]. CIESC Journal, 2017, 68(7): 2896-2909. | |
11 | Menasha J, Dunn-Rankin D, Muzio L, et al. Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater[J]. Fuel, 2011, 90: 2445-2453. |
12 | 刁润丽, 赵世伟, 刘嘉, 烟气脱硝产生的硫酸氢铵对空预器的影响及对策[J]. 应用能源技术, 2015, (4): 20-24. |
Diao R L, Zhao S W, Liu J. The effect of ammonium bisulfate in SCR flue gas denitrification process and solution for air preheater[J]. Applied Energy Technology, 2015, (4): 20-24. | |
13 | 马双忱, 邓悦, 吴文龙, 等. SCR脱硝副产物硫酸氢铵与空预器中飞灰反应特性[J]. 环境工程学报, 2016, (11): 6563-6570. |
Ma S C, Deng Y, Wu W L, et al. Reaction characteristic of by-product ammonium bisulfate from SCR denitrification and fly ash in air preheater[J]. Chinese Journal of Environmental Engineering, 2016, (11): 6563-6570. | |
14 | Zhou H, Zhang J K, Zhang K. Investigation of the deposition characteristics of ammonium bisulfate and fly ash blend using an on-line digital image technique: effect of deposition surface temperature[J]. Fuel Processing Technology, 2018, 179: 359-368. |
15 | 马双忱, 邓悦, 吴文龙, 等. SCR脱硝过程中硫酸氢铵形成特性实验研究[J]. 动力工程学报, 2016, 36: 143-150. |
Ma S C, Deng Y, Wu W L, et al. Experimental research on ABS formation characteristics in SCR denitrification process[J]. Journal of Chinese Society of Power Engineering, 2016, 36: 143-150. | |
16 | Li C X, Shen M Q, Yu T, et al. The mechanism of ammonium bisulfate formation and decomposition over V/WTi catalysts for NH3-selective catalytic reduction at various temperatures[J]. Physical Chemistry Chemical Physics, 2017, 19: 15194-15206. |
17 | 束航, 张玉华, 范红梅, 等. SCR脱硝中催化剂表面NH4HSO4生成及分解的原位红外研究[J]. 化工学报, 2015, 66(11): 4460-4468. |
Shu H, Zhang Y H, Fan H M, et al. FT-IR study of formation and decomposition of ammonium bisulfates on surface of SCR catalyst for nitrogen removal[J]. CIESC Journal, 2015, 66(11): 4460-4468. | |
18 | Tong H, Dai J H, He Y, et al. The effects of H2O and SO2 on the behaviour of CuSO4-CeO2/TS for low temperature catalytic reduction of NO with NH3[J]. Environmental Technology, 2011, 32: 891-900. |
19 | Liu R, Ji L C, Xu Y F, et al. Catalytic performance and SO2 tolerance of tetragonal-zirconia-based catalysts for low-temperature selective catalytic reduction[J]. Journal of Materials Research, 2016, 31: 2590-2597. |
20 | Bao J J, Mao L, Zhang Y H, et al. Effect of selective catalytic reduction system on fine particle emission characteristics[J]. Energy & Fuels, 2016, 30: 1325-1334. |
21 | Ye D, Qu R Y, Song H, et al. New insights into the various decomposition and reactivity behaviors of NH4HSO4 with NO on V2O5/TiO2 catalyst surfaces[J]. Chemical Engineering Journal, 2016, 283: 846-854. |
22 | Ye D, Qu R Y, Song H, et al. Investigation of the promotion effect of WO3 on the decomposition and reactivity of NH4HSO4 with NO on V2O5-WO3/TiO2 SCR catalysts[J]. RSC Advances, 2016, 6: 55584-55592. |
23 | Huang Z G, Zhu Z P, Liu Z Y, et al. Formation and reaction of ammonium sulfate salts on V2O5/AC catalyst during selective catalytic reduction of nitric oxide by ammonia at low temperatures[J]. Journal of Catalysis, 2003, 214: 213-219. |
24 | Zhu Z P, Niu H X, Liu Z Y, et al. Decomposition and reactivity of NH4HSO4 on V2O5/AC catalysts used for NO reduction with ammonia[J]. Journal of Catalysis, 2000, 195: 268-278. |
25 | 安呈帅. 大唐洛河发电厂#6炉空预器堵塞原因分析及处理[J]. 科技资讯, 2014, (32): 52. |
An C S. Analysis and treatment of blockage of air preheater in No. 6 boiler in Datang Luohe Power Plant[J]. Science & Technology Information, 2014, (32): 52. | |
26 | 李太兴. 火电机组脱硝系统对空气预热器影响及对策[J]. 山东电力技术, 2015, 42(3): 75-77. |
Li T X. Impact on air preheaters by denitration system and its countermeasures in thermal power unit[J]. Shandong Electric Power, 2015, 42(3): 75-77. | |
27 | 马双忱, 焦坤灵, 张立男, 等. 高温气相条件下硫酸氢铵与硫酸铵对20#碳钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 605-612. |
Ma S C, Jiao K N, Zhang L N, et al. Corrosion characteristics of carbon steel in high temperature gas containing ammonium bisulfate and ammonium sulfate[J]. Journal of Chinese Society for Corrosion and Protection, 2017, 37(6): 605-612. | |
28 | 马双忱, 金鑫, 孙云雪, 等. SCR烟气脱硝过程硫酸氢铵的生成机理与控制[J]. 热力发电, 2010, 39(8): 12-17. |
Ma S C, Jin X, Sun Y X, et al. The formation mechanism of ammonium bisulfate in SCR flue gas denitrification process and control thereof[J]. Thermal Power Generation, 2010, 39(8): 12-17. | |
29 | 马双忱, 郭蒙, 宋卉卉, 等. 选择性催化还原工艺中硫酸氢铵形成机理及影响因素[J]. 热力发电, 2014, 43(2): 75-78. |
Ma S C, Guo M, Song H H, et al. Formation mechanism and influencing factors of ammonium bisulfate during the selective catalytic reduction process[J]. Thermal Power Generation, 2014, 43(2): 75-78. |
[1] | 尹子骏, 苏胜, 卿梦霞, 赵志刚, 王中辉, 王乐乐, 江龙, 汪一, 胡松, 向军. 一种典型钒钛系SCR催化剂SO3生成特性研究[J]. 化工学报, 2021, 72(5): 2596-2603. |
[2] | 杨国强,曾伟,罗华勋,杨高东,张志炳. 亚硫酸铵微界面强化氧化特性研究[J]. 化工学报, 2020, 71(11): 4918-4926. |
[3] | 葛敬, 朱家骅, 夏素兰, 刘仕忠. 二水硫酸钙在硫酸铵溶液中的溶解度测定[J]. 化工学报, 2018, 69(7): 2829-2837. |
[4] | 冯浩, 熊源泉, 吴波. 氨基湿法脱硫脱硝吸收液电解制备过硫酸铵[J]. 化工学报, 2017, 68(12): 4691-4701. |
[5] | 戚春萍, 武文粉, 王晨晔, 李会泉. 燃煤电厂废旧SCR脱硝催化剂中TiO2载体的回收与再利用[J]. 化工学报, 2017, 68(11): 4239-4248. |
[6] | 胡斌, 刘勇, 杨春敏, 侯大伟, 袁竹林, 杨林军. 化学团聚促进电除尘脱除烟气中PM2.5和SO3[J]. 化工学报, 2016, 67(9): 3902-3909. |
[7] | 周彩荣, 梁欢欢, 韩雪巍, 黄明星, 王嬴权, 苏玉. 牛磺酸合成工艺的改进[J]. 化工学报, 2015, 66(1): 171-178. |
[8] | 党艳艳, 郭禹熙, 曹文静, 修志龙. 葡萄籽多酚类物质的盐析萃取[J]. 化工学报, 2014, 65(8): 3048-3053. |
[9] | 雷珊, 杨娟, 余剑, 刘云义, 许光文. 含钛高炉渣制备SCR烟气脱硝催化剂[J]. 化工学报, 2014, 65(4): 1251-1259. |
[10] | 王郎郎, 王学谦, 宁平, 施勇, 马懿星, 贾锐, 王飞. (NH4)2S吸收净化冶炼烟气中SO2回收硫资源的方法[J]. 化工学报, 2014, 65(11): 4586-4592. |
[11] | 樊庆锌1,王明轩1,关心2,邱微1,3. 某燃煤电厂300MW机组SCR烟气脱硝装置结构优化[J]. 化工进展, 2014, 33(10): 2806-2814. |
[12] | 耿春香,柴倩倩,王陈珑. Mn-Fe-Ce/TiO2低温脱硝催化剂的制备条件优化及其表征[J]. 化工进展, 2014, 33(04): 921-924. |
[13] | 王梦秋1,龚惠娟2,樊杨梅1,余珉1,陈泽智1,刘静3,潘敏3. 双氧水对亚硫酸铵的氧化特性[J]. 化工进展, 2014, 33(02): 505-509. |
[14] | 严密, 杨杰, 李晓东, 胡艳军, 严建华. 硫酸铵和尿素抑制飞灰合成二(口恶)英[J]. 化工学报, 2013, 64(11): 4196-4202. |
[15] | 华 炜,凌 俊. 220 t/h水煤浆锅炉烟气脱硝工艺技术[J]. 化工进展, 2013, 32(04): 955-958. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 333
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 962
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||