化工学报 ›› 2020, Vol. 71 ›› Issue (11): 4918-4926.DOI: 10.11949/0438-1157.20200803
收稿日期:
2020-06-22
修回日期:
2020-09-06
出版日期:
2020-11-05
发布日期:
2020-11-05
通讯作者:
张志炳
作者简介:
杨国强(1988—),男,博士,副研究员,基金资助:
Guoqiang YANG(),Wei ZENG,Huaxun LUO,Gaodong YANG,Zhibing ZHANG()
Received:
2020-06-22
Revised:
2020-09-06
Online:
2020-11-05
Published:
2020-11-05
Contact:
Zhibing ZHANG
摘要:
以亚硫酸铵水溶液的空气氧化为研究对象,考察了微界面强化对该体系传质与氧化过程的影响。在同一实验平台和操作工况下,对微界面强化与传统鼓泡塔氧化过程的传质和反应性能进行了实验研究。利用高速摄像与压差测量技术,分别对反应过程的空气气泡分布与气含率变化进行了测定。结果表明,相较于传统鼓泡塔空气氧化反应器,微界面强化氧化反应器以微界面体系取代了传统毫-厘米级宏界面,在不同盐离子浓度与氧化气量工况下均表现出了良好的强化效能。在微界面体系强化下,亚硫酸铵氧化过程气含率大幅提升,相界面积增加十余倍,反应速率平均提升56.8%,实验结论为微界面强化反应器的多相反应体系工业应用提供了一定的数据支撑。
中图分类号:
杨国强,曾伟,罗华勋,杨高东,张志炳. 亚硫酸铵微界面强化氧化特性研究[J]. 化工学报, 2020, 71(11): 4918-4926.
Guoqiang YANG,Wei ZENG,Huaxun LUO,Gaodong YANG,Zhibing ZHANG. Study on the characteristics of micro-interface intensified oxidation of ammonium sulfite[J]. CIESC Journal, 2020, 71(11): 4918-4926.
亚硫酸铵 浓度/(mol/L) | 密度ρl/ (kg/m3) | 表面张力σl/ (N/m) | 动力黏度μl/ (Pa·s) | pH |
---|---|---|---|---|
0.06 | 993.2 | 39.58×10-3 | 0.87×10-3 | 7.776 |
0.10 | 996.1 | 37.09×10-3 | 0.95×10-3 | 7.751 |
0.13 | 998.3 | 36.32×10-3 | 0.97×10-3 | 7.732 |
表1 反应液的主要物性
Table 1 Physical properties of solution
亚硫酸铵 浓度/(mol/L) | 密度ρl/ (kg/m3) | 表面张力σl/ (N/m) | 动力黏度μl/ (Pa·s) | pH |
---|---|---|---|---|
0.06 | 993.2 | 39.58×10-3 | 0.87×10-3 | 7.776 |
0.10 | 996.1 | 37.09×10-3 | 0.95×10-3 | 7.751 |
0.13 | 998.3 | 36.32×10-3 | 0.97×10-3 | 7.732 |
亚硫酸铵浓度/ (mol/L) | d32/μm | 效果对比 (MIR∶BCR) | |
---|---|---|---|
MIR | BCR | ||
0.06 | 1726.63 | 5241.79 | 32.94% |
0.10 | 1334.73 | 4997.27 | 26.71% |
0.13 | 703.28 | 4134.18 | 17.01% |
表2 不同亚硫酸铵浓度下气泡d32
Table 2 Sauter mean diameters under different ammonium sulfite concentrations
亚硫酸铵浓度/ (mol/L) | d32/μm | 效果对比 (MIR∶BCR) | |
---|---|---|---|
MIR | BCR | ||
0.06 | 1726.63 | 5241.79 | 32.94% |
0.10 | 1334.73 | 4997.27 | 26.71% |
0.13 | 703.28 | 4134.18 | 17.01% |
空气进料量/ (L/h) | d32/μm | 效果对比 (MIR∶BCR) | |
---|---|---|---|
MIR | BCR | ||
40 | 592.84 | 3402.77 | 17.42% |
100 | 636.67 | 3851.50 | 16.53% |
200 | 703.28 | 4134.18 | 17.01% |
300 | 1108.31 | 5555.37 | 19.95% |
表3 不同空气进料量下气泡d32
Table 3 Sauter mean diameters under different gas flowrates
空气进料量/ (L/h) | d32/μm | 效果对比 (MIR∶BCR) | |
---|---|---|---|
MIR | BCR | ||
40 | 592.84 | 3402.77 | 17.42% |
100 | 636.67 | 3851.50 | 16.53% |
200 | 703.28 | 4134.18 | 17.01% |
300 | 1108.31 | 5555.37 | 19.95% |
1 | Stacy C J, Melick C A, Cairncross R A. Esterification of free fatty acids to fatty acid alkyl esters in a bubble column reactor for use as biodiesel[J]. Fuel Processing Technology, 2014, 124(8): 70-77. |
2 | Farmer T C, McFarland E W, Doherty M F. Membrane bubble column reactor model for the production of hydrogen by methane pyrolysis[J]. International Journal of Hydrogen Energy, 2019, 4(29): 14721-14731. |
3 | Adhami M, Jamshidi N, Zarghami R, et al. Characterization of hydrodynamics of bubble columns by recurrence quantification analysis[J]. Chaos, Solitons & Fractals, 2018, 111: 213-226. |
4 | Wei B S, Jie Y, Guang L, et al. Modelling of breakage rate and bubble size distribution in bubble columns accounting for bubble shape variations[J]. Chemical Engineering Science, 2018, 187: 391-405. |
5 | Shu S L, Vidal D, Bertrand F, et al. Multiscale multiphase phenomena in bubble column reactors: a review[J]. Renewable Energy, 2019, 141: 613-631. |
6 | Joshi J B, Vitankar V S, Kulkarni A A, et al. Coherent flow structures in bubble column reactors[J]. Chemical Engineering Science, 2002, 57(16): 3157-3183. |
7 | García-Abuín A, Gómez-Díaz D, Losada M, et al. Bubble column gas-liquid interfacial area in a polymer+surfactant+water system[J]. Chemical Engineering Science, 2012, 75: 334-341. |
8 | Patel S, Daly J, Bukur D. Holdup and interfacial area measurements using dynamic gas disengagement[J]. AIChE Journal, 1989, 35: 931-942. |
9 | 张志炳, 田洪舟, 张锋, 等. 多相反应体系的微界面强化简述[J]. 化工学报, 2018, 69(1): 44-49. |
Zhang Z B, Tian H Z, Zhang F, et al. Overview of microinterface intensification in multiphase reaction systems[J]. CIESC Journal, 2018, 69(1): 44-49. | |
10 | 张志炳, 田洪舟, 王丹亮, 等. 气液反应体系相界面传质强化研究[J]. 化学工程, 2016, 44(3): 1-8. |
Zhang Z B, Tian H Z, Wang D L, et al. Intensification of interfacial mass transfer in gas-liquid reaction systems [J]. Chemical Engineering (China), 2016, 44(3): 1-8. | |
11 | Levenspiel O. Chemical Reaction Engineering [M]. 3rd ed. New York: John Wiley & Sons Inc., 1999. |
12 | Wen J, Sun Q, Sun Z, et al. An improved image processing technique for determination of volume and surface area of rising bubble[J]. International Journal of Multiphase Flow, 2018, 104: 294-306. |
13 | Zaruba A, Krepper E, Prasser H M, et al. Measurement of bubble velocity profiles and turbulent diffusion coefficients of the gaseous phase in rectangular bubble column using image processing[J]. Experimental Thermal and Fluid Science, 2005, 29(7): 851-860. |
14 | Zhou J, Li W, Xiao W. Kinetics of heterogeneous oxidation of concentrated ammonium sulfite[J]. Chemical Engineering Science, 2000, 55(23): 5637-5641. |
15 | Wang L, Wu S, Liu S, et al. Cobalt impregnated porous catalyst promoting ammonium sulfate recovery in an ammonia-based desulfurization process[J]. Chemical Engineering Journal, 2018, 331: 416-424. |
16 | Guo S, Wang J, Chen X, et al. Kinetics and reaction mechanism of catalytic oxidation of ammonium sulfite[J]. Asian Journal of Chemistry, 2014, 26(1): 69-74. |
17 | Mishra G C, Srivastava R D. Kinetics of heterogeneous oxidation of ammonium sulphite[J]. Journal of Applied Chemistry & Biotechnology, 1976, 26(1): 401-405. |
18 | Craig V S, Ninham B W, Pashley R M. The effect of electrolytes on bubble coalescence in water[J]. Journal of Physical Chemistry, 1993, 97(39): 10192-10197. |
19 | Deschenes L A, Barrett J, Muller L J, et al. Inhibition of bubble coalescence in aqueous solutions (1): Electrolytes[J]. Journal of Physical Chemistry B, 1998, 102(26): 5115-5119. |
20 | Besagni G, Inzoli F. The effect of electrolyte concentration on counter-current gas-liquid bubble column fluid dynamics: gas holdup, flow regime transition and bubble size distributions[J]. Chemical Engineering Research and Design, 2017, 118: 170-193. |
21 | Marrucci G, Nicodemo L. Coalescence of gas bubbles in aqueous solutions of inorganic electrolytes[J]. Chemical Engineering Science, 1967, 22(9): 1257-1265. |
22 | Lessard R R, Zieminski S A. Bubble coalescence and gas transfer in aqueous electrolytic solutions[J]. Industrial & Engineering Chemistry Fundamentals, 1971, 10(2): 260-269. |
23 | 胡华, 朱德权, 刘永民, 等. 电解质对溶液中气泡大小的影响[J]. 清华大学学报(自然科学版), 1995, (3): 106-110. |
Hu H, Zhu D Q, Liu Y M, et al. Effect of electrolyte on bubble size in solution[J]. Journal of Tsinghua University (Sci. & Tech.), 1995, (3): 106-110. | |
24 | Akita K, Yoshida F. Bubble size, interfacial area, and liquid-phase mass transfer coefficient in bubble columns[J]. Industrial & Engineering Chemistry Process Design and Development, 1974, 13(1): 84-91. |
25 | Camarasa E, Vial C, Poncin S, et al. Influence of coalescence behaviour of the liquid and of gas sparging on hydrodynamics and bubble characteristics in a bubble column[J]. Chemical Engineering and Processing: Process Intensification, 1999, 38(4): 329-344. |
26 | Basha O M, Morsi B I. Novel approach and correlation for bubble size distribution in a slurry bubble column reactor operating in the churn-turbulent flow regime[J]. Industrial & Engineering Chemistry Research, 2018, 57(16): 5705-5716. |
27 | Lehr F, Millies M, Mewes D. Bubble-size distributions and flow fields in bubble columns[J]. AIChE Journal, 2002, 48(11): 2426-2443. |
28 | Kazakis N, Mouza A A, Paras S V. Experimental study of bubble formation at metal porous spargers: effect of liquid properties and sparger characteristics on the initial bubble size distribution[J]. Chemical Engineering Journal, 2008, 137(2): 265-281. |
29 | Ramezani M, Mostoufi N, Mehrnia M. Improved modeling of bubble column reactors by considering the bubble size distribution[J]. Industrial & Engineering Chemistry Research, 2012, 51: 5705-5714. |
30 | Levenspiel O. Chemical reaction engineering[J]. Industrial & Engineering Chemistry Research, 1999, 38(11): 4140-4143. |
31 | Cho J S, Wakao N. Determination of liquid-side and gas-side volumetric mass transfer coefficients in a bubble column[J]. Journal of Chemical Engineering of Japan, 1988, 21(6): 576-581. |
32 | Wilkinson P M, Haringa H, Dierendonck L. Mass transfer and bubble size in a bubble column under pressure[J]. Chemical Engineering Science, 1994, 49(9): 1417-1427. |
[1] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[2] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[3] | 刘倩, 曹禹, 周琦, 穆景山, 历伟. 孔道结构修饰的Ziegler-Natta催化剂设计与高抗冲低缠结UHMWPE的制备[J]. 化工学报, 2023, 74(3): 1092-1101. |
[4] | 陈号, 田仪娟, 全学军, 蒋子文, 李纲. 铬铁矿在HCl-HF体系中的分解行为[J]. 化工学报, 2023, 74(3): 1161-1174. |
[5] | 侯跃辉, 刘璇, 廉应江, 韩梅, 尧超群, 陈光文. 超声微反应器内三硝基间苯三酚合成工艺研究[J]. 化工学报, 2022, 73(8): 3597-3607. |
[6] | 刘梦溪, 范怡平, 闫子涵, 姚秀颖, 卢春喜. 提升管进料区内气体射流流动行为的调控及工业应用[J]. 化工学报, 2022, 73(6): 2496-2513. |
[7] | 周晨阳, 贾颖, 赵跃民, 张勇, 付芝杰, 冯昱清, 段晨龙. 介尺度视角下干法重介流态化分选过程强化[J]. 化工学报, 2022, 73(6): 2452-2467. |
[8] | 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235. |
[9] | 初广文,廖洪钢,王丹,李晖,李洒,姜红,金万勤,陈建峰. 微纳介尺度气液反应过程强化[J]. 化工学报, 2021, 72(7): 3435-3444. |
[10] | 江澜, 罗勇, 邹海魁, 孙宝昌, 张亮亮, 初广文. 超重力多相催化反应器的研究进展[J]. 化工学报, 2021, 72(6): 3194-3201. |
[11] | 王冠球, 林冠屹, 朱春英, 付涛涛, 马友光. 微通道反应器的一维放大及气液传质特性[J]. 化工学报, 2021, 72(2): 937-944. |
[12] | 蔡润夏, 李凡星. 复杂氧化物载氧体的调变策略及在过程强化中的应用[J]. 化工学报, 2021, 72(12): 6122-6130. |
[13] | 张姬一哲, 王运东, 费维扬. 液液萃取塔研究的若干新进展及展望[J]. 化工学报, 2021, 72(12): 6016-6029. |
[14] | 吴沛文, 荀苏杭, 蒋伟, 李华明, 朱文帅. 离子液体反应型萃取燃油脱硫研究进展[J]. 化工学报, 2021, 72(1): 276-291. |
[15] | 李光晓,刘塞尔,苏远海. 微尺度内液-液传质及反应过程强化的研究进展[J]. 化工学报, 2021, 72(1): 452-467. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 271
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 470
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||