化工学报 ›› 2021, Vol. 72 ›› Issue (5): 2596-2603.DOI: 10.11949/0438-1157.20201429
尹子骏1(),苏胜1(),卿梦霞2,赵志刚1,王中辉1,王乐乐3,江龙1,汪一1,胡松1,向军1
收稿日期:
2020-10-12
修回日期:
2020-11-26
出版日期:
2021-05-05
发布日期:
2021-05-05
通讯作者:
苏胜
作者简介:
尹子骏(1996—),男,硕士研究生,基金资助:
YIN Zijun1(),SU Sheng1(),QING Mengxia2,ZHAO Zhigang1,WANG Zhonghui1,WANG Lele3,JIANG Long1,WANG Yi1,HU Song1,XIANG Jun1
Received:
2020-10-12
Revised:
2020-11-26
Online:
2021-05-05
Published:
2021-05-05
Contact:
SU Sheng
摘要:
选择性催化还原(SCR)技术由于脱硝效率高、选择性好而被广泛应用于烟气氮氧化物排放控制;然而,目前广泛采用的钒钛系SCR脱硝催化剂会使烟气中SO2氧化成SO3,烟气中过高的SO3对电厂安全运行会造成严重影响,也会对环境造成污染。以典型V2O5-WO3/TiO2催化剂为研究对象,系统研究了SCR脱硝过程中烟气流量、温度、O2浓度、SO2浓度等对催化剂表面SO3生成特性的影响,并进一步对SO3生成的反应动力学特性进行了分析。研究表明:催化剂表面SO3生成反应中SO2的反应级数为0.59,当O2浓度大于3%时,O2的反应级数为0,该反应的表观活化能为70.39 kJ/mol;实验条件下,烟气中SO2浓度增加会使SO3生成的反应速率提高;O2浓度对催化剂表面SO3生成影响并不显著;烟气温度对催化剂表面SO3生成具有显著影响,高温会促进SO3的生成。
中图分类号:
尹子骏, 苏胜, 卿梦霞, 赵志刚, 王中辉, 王乐乐, 江龙, 汪一, 胡松, 向军. 一种典型钒钛系SCR催化剂SO3生成特性研究[J]. 化工学报, 2021, 72(5): 2596-2603.
YIN Zijun, SU Sheng, QING Mengxia, ZHAO Zhigang, WANG Zhonghui, WANG Lele, JIANG Long, WANG Yi, HU Song, XIANG Jun. Study on SO3 formation characteristics of a typical vanadium titanium SCR catalyst[J]. CIESC Journal, 2021, 72(5): 2596-2603.
Ti | W | V | S | Si | Al | Fe | Ca | 其他 |
---|---|---|---|---|---|---|---|---|
83.88% | 6.48% | 1.51% | 1.42% | 2.56% | 1.06% | 0.09% | 0.93% | 2.07% |
表1 催化剂化学成分的检测结果(质量分数)
Table 1 Test results of XRF of catalyst
Ti | W | V | S | Si | Al | Fe | Ca | 其他 |
---|---|---|---|---|---|---|---|---|
83.88% | 6.48% | 1.51% | 1.42% | 2.56% | 1.06% | 0.09% | 0.93% | 2.07% |
比表面积/(m2/g) | 孔容/(cm3/g) | 平均孔径/nm |
---|---|---|
65.38 | 0.32 | 19.17 |
表2 催化剂比表面积检测结果
Table 2 Test results of BET of catalyst
比表面积/(m2/g) | 孔容/(cm3/g) | 平均孔径/nm |
---|---|---|
65.38 | 0.32 | 19.17 |
温度/℃ | 流量/(L/min) | 气体成分 |
---|---|---|
360 | 0.5~1.5 | 600×10-6 SO2、3% O2、N2平衡 |
280~400 | 1 | 600×10-6 SO2、3% O2、N2平衡 |
360 | 1 | (400~1200)×10-6 SO2、3% O2、N2平衡 |
360 | 1 | 600×10-6 SO2、1.5%~10% O2、N2平衡 |
表3 SO3生成实验的实验工况参数
Table 3 Experimental condition parameters of SO3 generation experiment
温度/℃ | 流量/(L/min) | 气体成分 |
---|---|---|
360 | 0.5~1.5 | 600×10-6 SO2、3% O2、N2平衡 |
280~400 | 1 | 600×10-6 SO2、3% O2、N2平衡 |
360 | 1 | (400~1200)×10-6 SO2、3% O2、N2平衡 |
360 | 1 | 600×10-6 SO2、1.5%~10% O2、N2平衡 |
SO2体积 分数 | 系统入口SO2总量/mmol | 冷凝管中SO3生成量/mmol | 吸收液中SO2含量/mmol | SOx收集 率/% |
---|---|---|---|---|
400×10-6 | 1.07 | 0.0082 | 1.01 | 95.16 |
600×10-6 | 1.61 | 0.0085 | 1.52 | 94.94 |
800×10-6 | 2.14 | 0.0088 | 2.10 | 98.54 |
表4 不同SO2浓度下反应系统SOx收集率
Table 4 SOx collection rate of reaction system under different SO2 concentration
SO2体积 分数 | 系统入口SO2总量/mmol | 冷凝管中SO3生成量/mmol | 吸收液中SO2含量/mmol | SOx收集 率/% |
---|---|---|---|---|
400×10-6 | 1.07 | 0.0082 | 1.01 | 95.16 |
600×10-6 | 1.61 | 0.0085 | 1.52 | 94.94 |
800×10-6 | 2.14 | 0.0088 | 2.10 | 98.54 |
反应温度/℃ | 表观速率常数×107/ (L/(g?min)) |
---|---|
280 | 4.80 |
320 | 8.42 |
360 | 27.74 |
400 | 68.47 |
表5 表观速率常数与反应温度的关系
Table 5 Relationship between rate constant and reaction temperature
反应温度/℃ | 表观速率常数×107/ (L/(g?min)) |
---|---|
280 | 4.80 |
320 | 8.42 |
360 | 27.74 |
400 | 68.47 |
1 | 李高磊, 郭沂权, 张世博, 等. 超低排放燃煤电厂SO3生成及控制的试验研究[J]. 中国电机工程学报, 2019, 39(4): 1079-1086. |
Li G L, Guo Y Q, Zhang S B, et al. Experimental research on SO3 generation and control in ultra-low emission coal-fired power plant[J]. Proceedings of the CSEE, 2019, 39(4): 1079-1086. | |
2 | Li X, Wu Z, Zhang L, et al. An updated acid dew point temperature estimation method for air-firing and oxy-fuel combustion processes[J]. Fuel Processing Technology, 2016, 154: 204-209. |
3 | Zheng C, Wang Y, Liu Y, et al. Formation, transformation, measurement, and control of SO3 in coal-fired power plants[J]. Fuel, 2019, 241: 327-346. |
4 | Shen J L, Zheng C H, Xu L J, et al. Atmospheric emission inventory of SO3 from coal-fired power plants in China in the period 2009—2014[J]. Atmospheric Environment, 2019, 197: 14-21. |
5 | Duan L B, Duan Y Q, Sarbassov Y, et al. SO3 formation under oxy-CFB combustion condition[J]. International Journal of Greenhouse Gas Control, 2015, 43: 172-178. |
6 | Zhao K, Han W, Tang Z, et al. Investigation of coating technology and catalytic performance over monolithic V2O5-WO3/TiO2 catalyst for selective catalytic reduction of NOx with NH3[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 503: 53-60. |
7 | Sarbassov Y, Duan L, Jeremias M, et al. SO3 formation and the effect of fly ash in a bubbling fluidised bed under oxy-fuel combustion conditions[J]. Fuel Processing Technology, 2017, 167: 314-321. |
8 | 束航, 张玉华, 范红梅, 等. SCR脱硝中催化剂表面NH4HSO4生成及分解的原位红外研究[J]. 化工学报, 2015, 66(11): 4460-4468. |
Shu H, Zhang Y H, Fan H M, et al. FT-IR study of formation and decomposition of ammonium bisulfates on surface of SCR catalyst for nitrogen removal [J]. CIESC Journal, 2015, 66(11): 4460-4468. | |
9 | Wijayanti K, Leistner K, Chand S. et al. Deactivation of Cu-SSZ-13 by SO2 exposure under SCR conditions[J]. Catalysis Science & Technology, 2016, 6: 2565-2579. |
10 | Ye D, Qu R, Song H, et al. Investigation of the promotion effect of WO3 on the decomposition and reactivity of NH4HSO4 with NO on V2O5-WO3/TiO2 SCR catalysts[J]. RSC Advances, 2016, 6(60): 55584-55592. |
11 | 刘芳琪, 于敦喜, 吴建群, 等. 燃煤锅炉SCR对颗粒物排放特性影响[J]. 化工学报, 2018, 69(9): 4051-4057. |
Liu F Q, Yu D X, Wu J Q, et al. Effect of SCR on particulate matter emissions from a coal-fired boiler[J]. CIESC Journal, 2018, 69(9): 4051-4057. | |
12 | Alvarez E, Blanco J, Knapp C, et al. Pilot plant performance of a SO2 to SO3 oxidation catalyst for flue-gas conditioning[J]. Catalysis Today, 2000, 59(3): 417-422. |
13 | Baltin G, Köser H, Wendlandt K P. Reactive desorption of sulfuric acid from ammonium sulfate loaded V2O5-WO3/TiO2 DeNOx‐catalysts[J]. Chemie Ingenieur Technik, 2001, 73(6): 605. |
14 | Dunn J P, Koppula P R, Stenger H G, et al. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts[J]. Applied Catalysis B: Environmental, 1998, 19(2): 103-117. |
15 | 张悠. 烟气中SO3测试技术及其应用研究[D]. 杭州: 浙江大学, 2013. |
Zhang Y. Research and application of SO3 measurement in flue gas[D]. Hangzhou: Zhejiang University, 2013. | |
16 | Li Y, Xiong J, Lin Y, et al. Distribution of SO2 oxidation products in the SCR of NO over a V2O5/TiO2 catalyst at different temperatures[J]. Industrial & Engineering Chemistry Research, 2020, 59: 5177-5185. |
17 | Maddalone R F, Newton S F, Rhudy R G, et al. Laboratory and field evaluation of the controlled condensation system for SO3 measurements in flue gas streams[J]. Journal of the Air Pollution Control Association, 1979, 29(6): 626-631. |
18 | Xiong J, Li Y R, Wang J, et al. Evaluation of sulfur trioxide detection with online isopropanol absorption method[J]. Journal of Environmental Sciences, 2018, 72: 25-32. |
19 | Kamata H, Ohara H, Takahashi K, et al. SO2 oxidation over the V2O5/TiO2 SCR catalyst[J]. Catalysis Letters, 2001, 73(1): 79-83. |
20 | Kwon D W, Park K H, Hong S C. Enhancement of SCR activity and SO2 resistance on VOx/TiO2 catalyst by addition of molybdenum[J]. Chemical Engineering Journal, 2016, 284: 315-324. |
21 | 唐昊, 李文艳, 王琦, 等. 商用选择性催化还原催化剂SO2氧化率控制研究进展[J]. 化工进展, 2017, 36(6): 2143-2149. |
Tang H, Li W Y, Wang Q, et al. Research progress on the control of SO2 oxidation by commercial SCR catalyst[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2143-2149. | |
22 | Qing M, Su S, Wang L L, et al. Effects of H2O and CO2 on the catalytic oxidation property of V/W/Ti catalysts for SO3 generation[J]. Fuel, 2019, 237: 545-554. |
23 | Kobayashi M, Hagi M. V2O5-WO3/TiO2-SiO2-SO42- catalysts: influence of active components and supports on activities in the selective catalytic reduction of NO by NH3 and in the oxidation of SO2[J]. Applied Catalysis B: Environmental, 2006, 63(1/2): 104-113. |
24 | Qing M, Su S, Wang L L, et al. Getting insight into the oxidation of SO2 to SO3 over V2O5-WO3/TiO2 catalysts: reaction mechanism and effects of NO and NH3[J]. Chemical Engineering Journal, 2019, 361: 1215-1224. |
25 | Ji P, Gao X, Du X, et al. Relationship between the molecular structure of V2O5/TiO2 catalysts and the reactivity of SO2 oxidation[J]. Catalysis Science & Technology, 2016, 6: 1187-1194. |
26 | Dunn J P, Stenger H G, Wachs I E. Oxidation of SO2 over supported metal oxide catalysts[J]. Journal of Catalysis, 1999, 181: 233-243. |
27 | 李萍, 李长明, 段正康, 等. 低温烟气脱硝催化剂适用条件与动力学[J]. 化工学报, 2019, 70(8): 2981-2990. |
Li P, Li C M, Duan Z K, et al. Application conditions and kinetics simulation over SCR catalyst for flue gas denitrification under low temperature[J]. CIESC Journal, 2019, 70(8): 2981-2990. | |
28 | Xiong J, Li Y, Lin Y, et al. Formation of sulfur trioxide during the SCR of NO with NH3 over a V2O5/TiO2 catalyst[J]. RSC Advances, 2019, 9: 38952-38961. |
29 | Zheng C, Xiao L, Qu R, et al. Numerical simulation of selective catalytic reduction of NO and SO2 oxidation in monolith catalyst[J]. Chemical Engineering Journal, 2019, 361: 874-884. |
30 | Mu J, Li X, Sun W, et al. Enhancement of low-temperature catalytic activity over a highly dispersed Fe-Mn/Ti catalyst for selective catalytic reduction of NOx with NH3[J]. Industrial & Engineering Chemistry Research, 2018, 57: 10159-10169. |
[1] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[2] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[3] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[4] | 禹进, 余彬彬, 蒋新生. 一种基于虚拟组分的燃烧调控化学作用量化及分析方法研究[J]. 化工学报, 2023, 74(3): 1303-1312. |
[5] | 陈晨, 杨倩, 陈云, 张睿, 刘冬. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73(9): 4133-4146. |
[6] | 陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857. |
[7] | 何聪, 钟文琪, 周冠文, 陈曦. 高海拔地区水泥生料悬浮炉分解特性研究[J]. 化工学报, 2022, 73(5): 2120-2129. |
[8] | 王敏, 程金兰, 李鑫, 陆晶晶, 尹崇鑫, 戴红旗. 酸性助水溶剂脱除木质素机理分析[J]. 化工学报, 2022, 73(5): 2206-2221. |
[9] | 杨霄, 丁锐, 李墨含, 宋正昶. 氧浓度对微通道内甲烷均相/非均相耦合反应特性的影响[J]. 化工学报, 2022, 73(12): 5427-5437. |
[10] | 黄顺进, 张丽, 颜井冲, 王志刚, 雷智平, 李占库, 任世彪, 王知彩, 水恒福. 高碱煤与煤矸石掺烧SO2和NO减排及结渣抑制研究[J]. 化工学报, 2022, 73(12): 5581-5591. |
[11] | 龚翔, 李林森, 姜召. PdCo/SiO2双金属催化剂用于杂环储氢载体的高效脱氢[J]. 化工学报, 2022, 73(10): 4448-4460. |
[12] | 张利合, 张凡, 李昌伦, 许德平, 徐振刚, 王永刚. BGL煤气化动力学模型构建与验证[J]. 化工学报, 2022, 73(10): 4668-4678. |
[13] | 赵旭, 卜昌盛, 王昕晔, 张鑫, 程晓磊, 王乃继, 朴桂林. 铁基载氧体辅助无烟煤焦富氧燃烧动力学分析[J]. 化工学报, 2022, 73(1): 384-392. |
[14] | 王婷婷, 曾玺, 韩振南, 王芳, 武鹏, 许光文. 微型流化床中生物质半焦水蒸气气化反应特性及动力学研究[J]. 化工学报, 2022, 73(1): 294-307. |
[15] | 陈旭杰, 吕喜蕾, 史欢欢, 郑丽萍, 魏茜文, 田鹏辉, 蒋雨希, 吕秀阳. HBr-MgBr2催化己糖二酸脱水环合制备2,5-呋喃二甲酸的研究[J]. 化工学报, 2021, 72(9): 4658-4664. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 300
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 486
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||