化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4830-4837.DOI: 10.11949/0438-1157.20210357
收稿日期:
2021-03-09
修回日期:
2021-05-10
出版日期:
2021-09-05
发布日期:
2021-09-05
通讯作者:
李宏光
作者简介:
唐晓婕(1996—),女,硕士研究生,
Xiaojie TANG(),Bo YANG,Hongguang LI(
)
Received:
2021-03-09
Revised:
2021-05-10
Online:
2021-09-05
Published:
2021-09-05
Contact:
Hongguang LI
摘要:
现代复杂化工过程生产运行记录了大量的过程调控时序数据,如何提取其中有价值的调控操纵经验和规则,对于提升过程运行智能化水平具有重要意义。时间序列聚类是一种挖掘历史调控操纵序列的有效方法,然而由于实际工况经常与历史数据出现偏差,使得重构准确的过程调控操纵策略出现困难。为此,本文提出了一种基于数据碎片化深度学习的过程调控操纵提取方法,采用基于Levenshtein距离的凝聚层次时序聚类获取不同过程扰动状态类别,提取对应的有效操纵序列进行碎片化处理,采用卷积神经网络对调控操纵策略进行深度学习和重构。将此方法在工业换热器过程上进行了应用,获得了满意的结果,表明所提出的方法能够克服常规操纵序列挖掘的工程应用适应性差、对数据源依赖性强等缺点。
中图分类号:
唐晓婕, 杨博, 李宏光. 复杂化工过程调控操纵策略的深度学习方法[J]. 化工学报, 2021, 72(9): 4830-4837.
Xiaojie TANG, Bo YANG, Hongguang LI. Deep learning approaches to complex chemical process control manipulating strategies[J]. CIESC Journal, 2021, 72(9): 4830-4837.
重构类别 | 精确率 | 准确率 | 召回率 | F1-Score |
---|---|---|---|---|
1 | 95.33% | 89.77% | 94.05% | 91.99% |
2 | 92.98% | 92.86% | 92.86% | 92.86% |
3 | 99.33% | 94.44% | 94.44% | 94.44% |
4 | 94.33% | 95.83% | 87.62% | 91.54% |
5 | 94.1% | 87.14% | 87.14% | 87.14% |
表1 混淆矩阵的关键评价指标
Table 1 Key evaluation indicators of the confusion matrix
重构类别 | 精确率 | 准确率 | 召回率 | F1-Score |
---|---|---|---|---|
1 | 95.33% | 89.77% | 94.05% | 91.99% |
2 | 92.98% | 92.86% | 92.86% | 92.86% |
3 | 99.33% | 94.44% | 94.44% | 94.44% |
4 | 94.33% | 95.83% | 87.62% | 91.54% |
5 | 94.1% | 87.14% | 87.14% | 87.14% |
过程扰动状态 | 关键变量IAE(监督控制) | 关键变量IAE(学习策略) |
---|---|---|
1 | 9989.62 | 9129.6 |
2 | 10003.09 | 9061.3 |
3 | 9949.4 | 9201.5 |
4 | 9960.45 | 10381 |
5 | 9909.4 | 9733 |
6 | 10019.84 | 9061.3 |
7 | — | 10144 |
表2 各类扰动状态下关键变量的IAE指标
Table 2 IAE contrasts of the key variable corresponding to the disturbance states
过程扰动状态 | 关键变量IAE(监督控制) | 关键变量IAE(学习策略) |
---|---|---|
1 | 9989.62 | 9129.6 |
2 | 10003.09 | 9061.3 |
3 | 9949.4 | 9201.5 |
4 | 9960.45 | 10381 |
5 | 9909.4 | 9733 |
6 | 10019.84 | 9061.3 |
7 | — | 10144 |
1 | Lines J, Davis L M, Hills J, et al. A shapelet transform for time series classification[C]∥Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD'12. August12-16, 2012. |
Beijing, China. New York: ACM Press, 2012: 289-297. | |
2 | LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
3 | Lee K B, Cheon S, Kim C O. A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing processes[J]. IEEE Transactions on Semiconductor Manufacturing, 2017, 30(2): 135-142. |
4 | Janssens O, Slavkovikj V, Vervisch B, et al. Convolutional neural network based fault detection for rotating machinery[J]. Journal of Sound and Vibration, 2016, 377: 331-345. |
5 | Yang B, Li H G. A novel convolutional neural network based approach to predictions of process dynamic time delay sequences[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 174: 56-61. |
6 | 张浩, 刘振娟, 李宏光, 等. 基于关联变量时滞分析卷积神经网络的生产过程时间序列预测方法[J]. 化工学报, 2017, 68(9): 3501-3510. |
Zhang H, Liu Z J, Li H G, et al. Process time series prediction based on application of correlated process variables to CNN time delayed analyses[J]. CIESC Journal, 2017, 68(9): 3501-3510. | |
7 | 易令, 吕忠元, 丁进良, 等. 面向原油总氢物性预测的数据扩增预处理方法[J]. 控制与决策, 2018, 33(12): 2153-2160. |
Yi L, Lyu Z Y, Ding J L, et al. Data pretreatment approach for crude oil hydrogen properties prediction[J]. Control and Decision, 2018, 33(12): 2153-2160. | |
8 | Wang Y J, Li H G. Industrial process time-series modeling based on adapted receptive field temporal convolution networks concerning multi-region operations[J]. Computers & Chemical Engineering, 2020, 139: 106877. |
9 | Wang Y J, Zhang Y C, Li H G. Adapted receptive field temporal convolutional networks with bar-shaped structures tailored to industrial process operation models[J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 5482-5490. |
10 | Keogh E, Lin J. Clustering of time-series subsequences is meaningless: implications for previous and future research[J]. Knowledge and Information Systems, 2005, 8(2): 154-177. |
11 | Kumar M, Patel N R, Woo J. Clustering seasonality patterns in the presence of errors[C]∥Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '02. July23-26, 2002. |
Edmonton, Alberta, Canada. New York: ACM Press, 2002: 557-563. | |
12 | Begum N, Ulanova L, Wang J, et al. Accelerating dynamic time warping clustering with a novel admissible pruning strategy[C]∥Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney NSW Australia. New York, NY, USA: ACM, 2015: 49-58. |
13 | Lin Y P, Yang Y W. Stock markets forecasting based on fuzzy time series model[C]∥2009 IEEE International Conference on Intelligent Computing and Intelligent Systems. November 20-22, 2009, Shanghai, China. IEEE, 2009: 782-786. |
14 | Fu T, Chung F, Ng V, et al. Pattern discovery from stock time series using self-organizing maps[EB/OL]. [2021-01-27]. |
15 | Akatsuka S, Noda M, Sugimoto K. Similarity analysis of sequential alarms in plant operation data by using levenshtein distance[J]. Kagaku Kogaku Ronbunshu, 2013, 39(4): 352-358. |
16 | Chen G C, Liu Y, Ge Z Q. K-means Bayes algorithm for imbalanced fault classification and big data application[J]. Journal of Process Control, 2019, 81: 54-64. |
17 | Luo F L. An improved K-means algorithm and its application in customer classification of network enterprises[J]. Applied Mechanics and Materials, 2014, 543/544/545/546/547: 2124-2127. |
18 | Schölkopf B, Platt J. A local learning approach for clustering[M].Advances in Neural Information Processing Systems 19: Conference. MIT Press, 2007: 1529-1536. |
19 | Li J F, Li J S, He H Q. A simple and accurate approach to hierarchical clustering[J]. Journal of Computational Information Systems, 2011, 7(7): 2577-2584. |
20 | 朱坚, 杨博, 王永健, 等. 一种新型的基于Levenshtein距离层次聚类的时序操作优化方法[J]. 化工学报, 2019, 70(2): 581-589. |
Zhu J, Yang B, Wang Y J, et al. New operation optimization method with time series based on Levenshtein distance hierarchical clustering[J]. CIESC Journal, 2019, 70(2): 581-589. | |
21 | Xu D K, Tian Y J. A comprehensive survey of clustering algorithms[J]. Annals of Data Science, 2015, 2(2): 165-193. |
22 | Bouguettaya A, Yu Q, Liu X M, et al. Efficient agglomerative hierarchical clustering[J]. Expert Systems with Applications, 2015, 42(5): 2785-2797. |
23 | Putera Utama Siahaan A, Aryza S, Hariyanto E, et al. Combination of levenshtein distance and Rabin-karp to improve the accuracy of document equivalence level[J]. International Journal of Engineering & Technology, 2018, 7(2.27): 17. |
24 | Levenshtein V. Binary Codes Capable of Correcting Deletions, Insertions, and Reversals[J]. Soviet Physics Doklady, 1966,10(8): 707-710. |
25 | Ho T, Oh S R, Kim H. A parallel approximate string matching under Levenshtein distance on graphics processing units using warp-shuffle operations[J]. PLoS One, 2017, 12(10): e0186251. |
26 | Lin J, Keogh E, Lonardi S, et al. A symbolic representation of time series, with implications for streaming algorithms[C]∥Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery - DMKD '03. June13, 2003. |
San Diego, California. New York: ACM Press, 2003:2. | |
27 | Lin J, Keogh E, Wei L, et al. Experiencing SAX: a novel symbolic representation of time series[J]. Data Mining and Knowledge Discovery, 2007, 15(2): 107-144. |
28 | Keogh E, Kasetty S. On the need for time series data mining benchmarks: a survey and empirical demonstration[J]. Data Mining and Knowledge Discovery, 2003, 7(4): 349-371. |
29 | Keogh E, Chakrabarti K, Pazzani M, et al. Dimensionality reduction for fast similarity search in large time series databases[J]. Knowledge and Information Systems, 2001, 3(3): 263-286. |
30 | 李海林, 郭崇慧. 基于云模型的时间序列分段聚合近似方法[J]. 控制与决策, 2011, 26(10): 1525-1529. |
Li H L, Guo C H. Piecewise aggregate approximation method based on cloud model for time series[J]. Control and Decision, 2011, 26(10): 1525-1529. | |
31 | Larsen R J, Marx M L. An Introduction to Mathematical Statistics and Its Applications[M]. Upper Saddle River:Prentice-Hall, 1981. |
[1] | 徐野, 黄文君, 米俊芃, 申川川, 金建祥. 多源信息融合的离心式压缩机喘振诊断方法[J]. 化工学报, 2023, 74(7): 2979-2987. |
[2] | 袁壮, 凌逸群, 杨哲, 李传坤. 基于TA-ConvBiLSTM的化工过程关键工艺参数预测[J]. 化工学报, 2022, 73(1): 342-351. |
[3] | 孙先亮, 李健, 韩哲哲, 许传龙. 基于数据驱动的卷积神经网络电容层析成像图像重建[J]. 化工学报, 2020, 71(5): 2004-2016. |
[4] | 朱坚, 杨博, 王永健, 唐晓婕, 李宏光. 一种新型的基于Levenshtein距离层次聚类的时序操作优化方法[J]. 化工学报, 2019, 70(2): 581-589. |
[5] | 方兴, 晋欣桥, 范波, 杜志敏, 曾晓庆. 基于层次聚类的航站楼空调机组运行性能评价[J]. 化工学报, 2012, 63(S2): 89-94. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 302
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 392
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||