化工学报 ›› 2022, Vol. 73 ›› Issue (1): 342-351.DOI: 10.11949/0438-1157.20211104
收稿日期:
2021-08-09
修回日期:
2021-10-20
出版日期:
2022-01-05
发布日期:
2022-01-18
通讯作者:
杨哲
作者简介:
袁壮(1991—),男,博士,工程师,基金资助:
Zhuang YUAN1(),Yiqun LING2,Zhe YANG1(),Chuankun LI1
Received:
2021-08-09
Revised:
2021-10-20
Online:
2022-01-05
Published:
2022-01-18
Contact:
Zhe YANG
摘要:
化工过程中,掌握关键工艺参数的变化趋势对于消除潜在波动、维持工况稳定作用巨大。然而,传统的浅层静态模型很难对非线性和动态性显著的复杂序列数据进行精准预测。针对上述难题,提出一种深度预测模型TA-ConvBiLSTM,将卷积神经网络(convolutional neural networks, CNN)和双向长短时记忆网络(bi-directional long short term memory, BiLSTM)集成到统一框架内,使其不仅能在每个时间步上自动挖掘高维变量间的隐含关联,更能横跨所有时间步自适应提取有用的深层时序特征。此外,引入时间注意力(temporal attention, TA)机制,为反映目标变化规律的重要信息增加权重,避免其因输入序列过长、深层特征太多而被掩盖。所提出方法的有效性在国内某延迟焦化装置炉管温度预测的案例中得到验证。
中图分类号:
袁壮, 凌逸群, 杨哲, 李传坤. 基于TA-ConvBiLSTM的化工过程关键工艺参数预测[J]. 化工学报, 2022, 73(1): 342-351.
Zhuang YUAN, Yiqun LING, Zhe YANG, Chuankun LI. Critical parameters prediction based on TA-ConvBiLSTM for chemical process[J]. CIESC Journal, 2022, 73(1): 342-351.
符号 | 变量 | 单位 | 位号 | XGBoost重要度 |
---|---|---|---|---|
x1 | 炉管局部温度 | ℃ | y2jTI2012A | 539 |
x2 | 加热炉进料流量Ⅰ | t/h | y2jFI2007A | 205 |
x3 | 加热炉进口温度 | ℃ | y2jTI2003 | 178 |
x4 | 加热炉进料压力Ⅰ | MPa | y2jPI2013B | 82 |
x5 | 加热炉进料压力Ⅱ | MPa | y2jPI2013A | 68 |
x6 | 加热炉进料流量Ⅱ | t/h | y2jFI2007C | 26 |
x7 | 加热炉进料压力Ⅲ | MPa | y2jPI2014C | 24 |
x8 | 加热炉进料压力Ⅳ | MPa | y2jPI2013C | 14 |
x9 | 加热炉出口温度 | ℃ | y2jTI2009B | 13 |
x10 | 蒸汽流量 | t/h | y2jFIC2002B | 13 |
表1 部分候选关联变量及其特征重要度
Table 1 Some candidate correlation variables and their characteristic importance
符号 | 变量 | 单位 | 位号 | XGBoost重要度 |
---|---|---|---|---|
x1 | 炉管局部温度 | ℃ | y2jTI2012A | 539 |
x2 | 加热炉进料流量Ⅰ | t/h | y2jFI2007A | 205 |
x3 | 加热炉进口温度 | ℃ | y2jTI2003 | 178 |
x4 | 加热炉进料压力Ⅰ | MPa | y2jPI2013B | 82 |
x5 | 加热炉进料压力Ⅱ | MPa | y2jPI2013A | 68 |
x6 | 加热炉进料流量Ⅱ | t/h | y2jFI2007C | 26 |
x7 | 加热炉进料压力Ⅲ | MPa | y2jPI2014C | 24 |
x8 | 加热炉进料压力Ⅳ | MPa | y2jPI2013C | 14 |
x9 | 加热炉出口温度 | ℃ | y2jTI2009B | 13 |
x10 | 蒸汽流量 | t/h | y2jFIC2002B | 13 |
序号 | 网络结构 | MAE | RMSE | R2 |
---|---|---|---|---|
1 | 0.0179 | 0.0242 | 0.975 | |
2 | 0.0271 | 0.0349 | 0.947 | |
3 | 0.0185 | 0.0269 | 0.969 | |
4 | 0.0186 | 0.258 | 0.971 | |
5 | 0.0151 | 0.0216 | 0.980 | |
6 | 0.0190 | 0.0254 | 0.972 | |
7 | 0.0196 | 0.0264 | 0.970 | |
8 | 0.0222 | 0.0302 | 0.961 | |
9 | 0.0166 | 0.0235 | 0.976 |
表2 不同网络结构下的模型预测性能
Table 2 Model prediction accuracy under different network structures
序号 | 网络结构 | MAE | RMSE | R2 |
---|---|---|---|---|
1 | 0.0179 | 0.0242 | 0.975 | |
2 | 0.0271 | 0.0349 | 0.947 | |
3 | 0.0185 | 0.0269 | 0.969 | |
4 | 0.0186 | 0.258 | 0.971 | |
5 | 0.0151 | 0.0216 | 0.980 | |
6 | 0.0190 | 0.0254 | 0.972 | |
7 | 0.0196 | 0.0264 | 0.970 | |
8 | 0.0222 | 0.0302 | 0.961 | |
9 | 0.0166 | 0.0235 | 0.976 |
池化策略 | 池化尺寸 | MAE | RMSE | R2 |
---|---|---|---|---|
不添加池化层 | 0.0151 | 0.0216 | 0.980 | |
max-pooling | 2 | 0.0189 | 0.0260 | 0.971 |
3 | 0.0232 | 0.0311 | 0.958 | |
4 | 0.0258 | 0.0362 | 0.943 | |
mean-pooling | 2 | 0.0209 | 0.0286 | 0.965 |
3 | 0.0271 | 0.0354 | 0.946 | |
4 | 0.0316 | 0.0431 | 0.920 |
表3 不同池化尺寸下的模型预测性能
Table 3 Model prediction accuracy under different pooling sizes
池化策略 | 池化尺寸 | MAE | RMSE | R2 |
---|---|---|---|---|
不添加池化层 | 0.0151 | 0.0216 | 0.980 | |
max-pooling | 2 | 0.0189 | 0.0260 | 0.971 |
3 | 0.0232 | 0.0311 | 0.958 | |
4 | 0.0258 | 0.0362 | 0.943 | |
mean-pooling | 2 | 0.0209 | 0.0286 | 0.965 |
3 | 0.0271 | 0.0354 | 0.946 | |
4 | 0.0316 | 0.0431 | 0.920 |
Batch size | MAE | RMSE | R2 |
---|---|---|---|
64 | 0.0179 | 0.0237 | 0.976 |
128 | 0.0151 | 0.0216 | 0.980 |
256 | 0.0180 | 0.0245 | 0.974 |
512 | 0.0186 | 0.0262 | 0.970 |
1024 | 0.0204 | 0.0278 | 0.967 |
表4 不同batch size下的模型预测性能
Table 4 Model prediction accuracy under different batch sizes
Batch size | MAE | RMSE | R2 |
---|---|---|---|
64 | 0.0179 | 0.0237 | 0.976 |
128 | 0.0151 | 0.0216 | 0.980 |
256 | 0.0180 | 0.0245 | 0.974 |
512 | 0.0186 | 0.0262 | 0.970 |
1024 | 0.0204 | 0.0278 | 0.967 |
(a) Input | ||||
---|---|---|---|---|
网络类型 | b | k | p | 输出 |
输入层 | 48 | 10 | 1 | 48×10 |
(b) CNN | ||||
网络类型 | 核数量 | 核尺寸 | 比率 | 输出 |
卷积层 | 64 | 1×1 | 48×64 | |
卷积层 | 96 | 1×3 | 46×96 | |
卷积层 | 128 | 1×5 | 42×128 | |
Dropout | 0.3 | 42×128 | ||
(c) BiLSTM | ||||
网络类型 | 单元数 | 比率 | 输出 | |
BiLSTM | 128 | 42×256 | ||
BiLSTM | 256 | 42×512 | ||
Dropout | 0.2 | 42×512 | ||
(d) XGBoost | ||||
基学习器 | 学习率 | 迭代 | 惩罚项 | 最大深度 |
gbtree | 0.1 | 50 | 0 | 15 |
(e) SVR | ||||
内核 | 阶次 | 精度 | 惩罚项c | 核系数g |
rbf | 3 | 10-3 | 4 | Auto |
(f) BPNN | ||||
神经元数 | 激活 | 优化器 | 惩罚项 | 迭代 |
100 | ReLu | Adam | 10-4 | 1000 |
表5 网络结构与参数设置
Table 5 Networks structure and parameters setting
(a) Input | ||||
---|---|---|---|---|
网络类型 | b | k | p | 输出 |
输入层 | 48 | 10 | 1 | 48×10 |
(b) CNN | ||||
网络类型 | 核数量 | 核尺寸 | 比率 | 输出 |
卷积层 | 64 | 1×1 | 48×64 | |
卷积层 | 96 | 1×3 | 46×96 | |
卷积层 | 128 | 1×5 | 42×128 | |
Dropout | 0.3 | 42×128 | ||
(c) BiLSTM | ||||
网络类型 | 单元数 | 比率 | 输出 | |
BiLSTM | 128 | 42×256 | ||
BiLSTM | 256 | 42×512 | ||
Dropout | 0.2 | 42×512 | ||
(d) XGBoost | ||||
基学习器 | 学习率 | 迭代 | 惩罚项 | 最大深度 |
gbtree | 0.1 | 50 | 0 | 15 |
(e) SVR | ||||
内核 | 阶次 | 精度 | 惩罚项c | 核系数g |
rbf | 3 | 10-3 | 4 | Auto |
(f) BPNN | ||||
神经元数 | 激活 | 优化器 | 惩罚项 | 迭代 |
100 | ReLu | Adam | 10-4 | 1000 |
序号 | 类别 | 模型 | MAE | RMSE | R2 |
---|---|---|---|---|---|
1 | TA机制 | TA-ConvBiLSTM | 0.0151 | 0.0216 | 0.980 |
2 | TA-BiLSTM | 0.0185 | 0.0251 | 0.973 | |
3 | 深层网络 | BiLSTM | 0.0219 | 0.0294 | 0.963 |
4 | ConvBiLSTM | 0.0240 | 0.0318 | 0.956 | |
5 | LSTM | 0.0264 | 0.0351 | 0.947 | |
6 | CNN | 0.0323 | 0.0417 | 0.925 | |
7 | 浅层网络 | SVR | 0.0374 | 0.0463 | 0.908 |
8 | XGBoost | 0.0371 | 0.0473 | 0.904 | |
9 | BPNN | 0.0449 | 0.0517 | 0.885 |
表6 各模型预测性能对比
Table 6 Comparison of prediction performance of various models
序号 | 类别 | 模型 | MAE | RMSE | R2 |
---|---|---|---|---|---|
1 | TA机制 | TA-ConvBiLSTM | 0.0151 | 0.0216 | 0.980 |
2 | TA-BiLSTM | 0.0185 | 0.0251 | 0.973 | |
3 | 深层网络 | BiLSTM | 0.0219 | 0.0294 | 0.963 |
4 | ConvBiLSTM | 0.0240 | 0.0318 | 0.956 | |
5 | LSTM | 0.0264 | 0.0351 | 0.947 | |
6 | CNN | 0.0323 | 0.0417 | 0.925 | |
7 | 浅层网络 | SVR | 0.0374 | 0.0463 | 0.908 |
8 | XGBoost | 0.0371 | 0.0473 | 0.904 | |
9 | BPNN | 0.0449 | 0.0517 | 0.885 |
1 | 邵伟明, 葛志强, 李浩, 等. 基于循环神经网络的半监督动态软测量建模方法[J]. 电子测量与仪器学报, 2019, 33(11): 7-13. |
Shao W M, Ge Z Q, Li H, et al. Semisupervised dynamic soft sensing approaches based on recurrent neural network[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(11): 7-13. | |
2 | Wang K, Gopaluni R B, Chen J, et al. Deep learning of complex batch process data and its application on quality prediction[J]. IEEE Transactions on Industrial Informatics, 2020, 16(12): 7233-7242. |
3 | Yuan X F, Ou C, Wang Y L, et al. A novel semi-supervised pre-training strategy for deep networks and its application for quality variable prediction in industrial processes[J]. Chemical Engineering Science, 2020, 217: 115509. |
4 | 李泽龙, 杨春节, 刘文辉, 等. 基于LSTM-RNN模型的铁水硅含量预测[J]. 化工学报, 2018, 69(3): 992-997. |
Li Z L, Yang C J, Liu W H, et al. Research on hot metal Si-content prediction based on LSTM-RNN[J]. CIESC Journal, 2018, 69(3): 992-997. | |
5 | Yao L, Ge Z Q. Deep learning of semisupervised process data with hierarchical extreme learning machine and soft sensor application[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1490-1498. |
6 | Yuan X F, Huang B, Wang Y L, et al. Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE[J]. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3235-3243. |
7 | Yan W W, Tang D, Lin Y J. A data-driven soft sensor modeling method based on deep learning and its application[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 4237-4245. |
8 | Liu Y, Yang C, Gao Z L, et al. Ensemble deep kernel learning with application to quality prediction in industrial polymerization processes[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 174: 15-21. |
9 | 宋菁华, 杨春节, 周哲, 等. 改进型EMD-Elman神经网络在铁水硅含量预测中的应用[J]. 化工学报, 2016, 67(3): 729-735. |
Song J H, Yang C J, Zhou Z, et al. Application of improved EMD-Elman neural network to predict silicon content in hot metal[J]. CIESC Journal, 2016, 67(3): 729-735. | |
10 | 刘佳, 邵诚, 朱理. 基于迁移学习工况划分的裂解炉收率PSO-LS-SVM建模[J]. 化工学报, 2016, 67(5): 1982-1988. |
Liu J, Shao C, Zhu L. Modeling of cracking furnace yields with PSO-LS-SVM based on operating condition classification by transfer learning[J]. CIESC Journal, 2016, 67(5): 1982-1988. | |
11 | Geng Z Q, Dong J G, Chen J, et al. A new self-organizing extreme learning machine soft sensor model and its applications in complicated chemical processes[J]. Engineering Applications of Artificial Intelligence, 2017, 62: 38-50. |
12 | 顾恒昌, 牟鹏, 李建伟. 基于交叉迭代BLSTM网络的乙烯裂解炉建模[J]. 化工学报, 2019, 70(2): 548-555. |
Gu H C, Mu P, Li J W. Modeling and application of ethylene cracking furnace based on cross-iterative BLSTM network[J]. CIESC Journal, 2019, 70(2): 548-555. | |
13 | Liu S, Liu X J, Lyu Q, et al. Comprehensive system based on a DNN and LSTM for predicting sinter composition[J]. Applied Soft Computing, 2020, 95: 106574. |
14 | Sun Q Q, Ge Z Q. Probabilistic sequential network for deep learning of complex process data and soft sensor application[J]. IEEE Transactions on Industrial Informatics, 2019, 15(5): 2700-2709. |
15 | Shao W M, Yao L, Ge Z Q, et al. Parallel computing and SGD-based DPMM for soft sensor development with large-scale semisupervised data[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6362-6373. |
16 | Yuan X F, Li L, Shardt Y A W, et al. Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4404-4414. |
17 | Yuan X F, Li L, Wang Y L. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3168-3176. |
18 | 耿志强, 徐猛, 朱群雄, 等. 基于深度学习的复杂化工过程软测量模型研究与应用[J]. 化工学报, 2019, 70(2): 564-571. |
Geng Z Q, Xu M, Zhu Q X, et al. Research and application of soft measurement model for complex chemical processes based on deep learning[J]. CIESC Journal, 2019, 70(2): 564-571. | |
19 | 温鑫, 钱玉良, 彭道刚, 等. 基于深度双向LSTM的SCR系统NOx排放预测模型研究[J]. 热能动力工程, 2020, 35(10): 57-64. |
Wen X, Qian Y L, Peng D G, et al. NOx emission prediction model of SCR system based on deep bidirectional LSTM[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(10): 57-64. | |
20 | Zhang L, Liu P, Zhao L, et al. Air quality predictions with a semi-supervised bidirectional LSTM neural network[J]. Atmospheric Pollution Research, 2021, 12(1): 328-339. |
21 | Wu H, Zhao J S. Deep convolutional neural network model based chemical process fault diagnosis[J]. Computers & Chemical Engineering, 2018, 115: 185-197. |
22 | Chen Y H, Peng G L, Zhu Z Y, et al. A novel deep learning method based on attention mechanism for bearing remaining useful life prediction[J]. Applied Soft Computing, 2020, 86: 105919. |
23 | 张浩, 刘振娟, 李宏光, 等. 基于关联变量时滞分析卷积神经网络的生产过程时间序列预测方法[J]. 化工学报, 2017, 68(9): 3501-3510. |
Zhang H, Liu Z J, Li H G, et al. Process time series prediction based on application of correlated process variables to CNN time delayed analyses[J]. CIESC Journal, 2017, 68(9): 3501-3510. | |
24 | 王丽亚, 刘昌辉, 蔡敦波, 等. 基于CNN-BiLSTM网络引入注意力模型的文本情感分析[J]. 武汉工程大学学报, 2019, 41(4): 386-391. |
Wang L Y, Liu C H, Cai D B, et al. Text sentiment analysis based on CNN-BiLSTM network and attention model[J]. Journal of Wuhan Institute of Technology, 2019, 41(4): 386-391. | |
25 | Yuan X F, Gu Y J, Wang Y L, et al. A deep supervised learning framework for data-driven soft sensor modeling of industrial processes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 4737-4746. |
26 | Zhang D H, Qian L Y, Mao B J, et al. A data-driven design for fault detection of wind turbines using random forests and XGboost[J]. IEEE Access, 2018, 6: 21020-21031. |
27 | Zhang X J, Zhang Q R. Short-term traffic flow prediction based on LSTM-XGBoost combination model[J]. Computer Modeling in Engineering & Sciences, 2020, 125(1): 95-109. |
28 | Zhu X L, Hao K R, Xie R M, et al. Soft sensor based on eXtreme gradient boosting and bidirectional converted gates long short-term memory self-attention network[J]. Neurocomputing, 2021, 434: 126-136. |
29 | Bisht H, Balachandran V S, Patel M, et al. Effect of composition of coke deposited in delayed coker furnace tubes on on-line spalling[J]. Fuel Processing Technology, 2018, 172: 133-141. |
30 | 李娜, 李朋. 延迟焦化加热炉技术现状[J]. 化工进展, 2020, 39(S2): 115-120. |
Li N, Li P. Present situation of coking heater technology[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 115-120. |
[1] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[2] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[3] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[4] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[5] | 徐野, 黄文君, 米俊芃, 申川川, 金建祥. 多源信息融合的离心式压缩机喘振诊断方法[J]. 化工学报, 2023, 74(7): 2979-2987. |
[6] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[7] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[8] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[9] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
[10] | 黄磊, 孔令学, 白进, 李怀柱, 郭振兴, 白宗庆, 李平, 李文. 油页岩添加对准东高钠煤灰熔融行为影响的研究[J]. 化工学报, 2023, 74(5): 2123-2135. |
[11] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[12] | 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160. |
[13] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
[14] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
[15] | 吴心远, 刘奇磊, 曹博渊, 张磊, 都健. Group2vec:基于无监督机器学习的基团向量表示及其物性预测应用[J]. 化工学报, 2023, 74(3): 1187-1194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||